Prenatal Opioid Exposure Impairs Endocannabinoid and Glutamate Transmission in the Dorsal Striatum

If you need an accessible version of this item, please email your request to digschol@iu.edu so that they may create one and provide it to you.
Date
2022-04-20
Language
American English
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Society for Neuroscience
Abstract

The opioid crisis has contributed to a growing population of children exposed to opioids during fetal development; however, many of the long-term effects of opioid exposure on development are unknown. We previously demonstrated that opioids have deleterious effects on endocannabinoid plasticity at glutamate synapses in the dorsal striatum of adolescent rodents, but it is unclear whether prenatal opioid exposure produces similar neuroadaptations. Using a mouse model of prenatal methadone exposure (PME), we performed proteomics, phosphoproteomics, and patch-clamp electrophysiology in the dorsolateral striatum (DLS) and dorsomedial striatum (DMS) to examine synaptic functioning in adolescent PME offspring. PME impacted the proteome and phosphoproteome in a region- and sex-dependent manner. Many proteins and phosphorylated proteins associated with glutamate transmission were differentially abundant in PME offspring, which was associated with reduced glutamate release in the DLS and altered the rise time of excitatory events in the DMS. Similarly, the intrinsic excitability properties of DMS neurons were significantly affected by PME. Last, pathway analyses revealed an enrichment in retrograde endocannabinoid signaling in the DLS, but not in the DMS, of males. Electrophysiology studies confirmed that endocannabinoid-mediated synaptic depression was impaired in the DLS, but not DMS, of PME-males. These results indicate that PME induces persistent neuroadaptations in the dorsal striatum and could contribute to the aberrant behavioral development described in offspring with prenatal opioid exposure.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Grecco GG, Muñoz B, Di Prisco GV, et al. Prenatal Opioid Exposure Impairs Endocannabinoid and Glutamate Transmission in the Dorsal Striatum. eNeuro. 2022;9(2):ENEURO.0119-22.2022. Published 2022 Apr 20. doi:10.1523/ENEURO.0119-22.2022
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
eNeuro
Source
PMC
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Final published version
Full Text Available at
This item is under embargo {{howLong}}