Stem Cell Therapy and Hydrogen Sulfide: Conventional or Nonconventional Mechanisms of Action?
Date
Language
Embargo Lift Date
Department
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Abstract
Purpose: Hydrogen sulfide (H2S) has many beneficial biological properties, including the ability to promote vasodilation. It has been shown to be released from stem cells and increased by hypoxia. Therefore, H2S may be an important paracrine factor in stem cell mediated intestinal protection. We hypothesized that hydrogen sulfide created through conventional pathways would be a critical component of stem cell mediated intestinal protection following ischemic injury.
Methods: Human bone marrow derived mesenchymal stem cells (BMSCs) were transfected with negative control siRNA (Scramble), or with siRNA to CBS, MPST, or CTH. Knockdown was confirmed with PCR and hydrogen sulfide gas assessed with AzMC fluorophore. Eight week old male mice then underwent intestinal ischemia for 60 mins, after which time, perfusion was restored. BMSCs from each of the above groups were then placed into the mouse abdominal cavity prior to final closure. After 24 hours, mice were reanesthetized and mesenteric perfusion was assessed by Laser Doppler Imaging (LDI). Animals were then sacrificed and intestines excised, placed in formalin, paraffin embedded, and stained with H & E. Intestines were then scored with a common mucosal injury grading scale.
Results: PCR confirmed knockdown of conventional H2S producing enzymes (CBS, MPST, CTH). Hydrogen sulfide gas was decreased in MPST and CTH transfected cells in normoxic conditions but was not decreased compared to scramble in any of the transfected groups in hypoxic conditions. BMSCs promoted increased mesenteric perfusion at 24 hours post-ischemia compared to vehicle. Transfected stem cells provided equivalent protection. Histologic injury was improved with BMSCs compared to vehicle. CBS, MPST, and CTH knockdown cell lines did not have any worse histological injury compared to Scramble.
Conclusion: Knocking down conventional H2S producing enzymes only impacted gas production in normoxic conditions. When cells were transfected in hypoxic conditions, as would be expected in the ischemic intestines, hydrogen sulfide gas was not depressed. These data, along with unchanged perfusion and histological injury parameters with conventional enzyme knockdown would indicate that alternative H2S production pathways may be initiated during hypoxic and/or ischemic events.