Comparison of Artificial Intelligence and Eyeball Method in the Detection of Fatty Liver Disease

If you need an accessible version of this item, please submit a remediation request.
Date
2023-07-26
Language
English
Embargo Lift Date
Department
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Abstract

Background: Quantification of liver fat content relies on visual microscopic inspection of liver biopsies by pathologists. Their percent macrosteatosis (%MaS) estimation is vital in determining donor liver transplantability; however, the eyeball method may vary between observers. Overestimations of %MaS can potentially lead to the discard of viable donor livers. We hypothesize that artificial intelligence (AI) could be helpful in providing a more objective and accurate measurement of %MaS.

Methods: Literature review identified HALO (image analysis) and U-Net (deep-learning) as high-accuracy AI programs capable of calculating %MaS in liver biopsies. We compared (i) an experienced pathologist’s and (ii) a transplant surgeon’s eyeball %MaS estimations from de-novo liver transplant (LT) biopsy samples taken 2h post-reperfusion to (iii) the HALO-calculated %MaS (Fig.1). 250 patients had undergone LT at Indiana University between 2020-2021, and 211 had sufficient data for inclusion. Each biopsy was digitized into 5 random non-overlapping tiles at 20x magnification (a total of 1,055 images). We used HALO software for analysis and set the minimum vacuole area to 10μm² to avoid the inclusion of microsteatosis. Microsteatosis was excluded by the pathologist and the surgeon by the eyeball method using the same 1,055 images. Each %MaS estimation was compared with early allograft dysfunction (EAD). EAD is defined by the presence of at least one of the following: INR >1.6 on postoperative day (POD) 7, total bilirubin >10mg/dL on POD7, or AST/ALT >2000IU/L within the first 7 days following LT.

Results: Of 211 LTs, 42 (19.9%) had EAD. The mean %MaS estimation of pathologist and transplant surgeon were 6.3% (SD: 11.9%) and 3.2% (SD: 6.4%), respectively. HALO yielded a significantly lower mean %MaS of 2.6% (SD: 2.6%) than the pathologist’s eyeball method (p<0.001). The mean %MaS calculated by HALO was higher in EAD patients than in non-EAD (p=0.032), but this difference did not reach statistical significance in the pathologist’s estimation (p=0.069).

Conclusions: Although mean %MaS measurements from all parties were mild (<10%), human eyeball estimations of %MaS were significantly higher than HALO’s %MaS. The HALO-calculated %MaS differed significantly between the EAD and non-EAD LTs which might suggest a possible correlation between the AI’s steatosis analysis and EAD outcomes. However, pathologic variables other than %MaS (necrosis or cholestasis) should be included in future analyses to determine whether %MaS is the dominant parameter predicting EAD. AI is a promising tool to quantify liver steatosis and will help pathologists and transplant surgeons predict liver transplant viability.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
ISSN
Publisher
Series/Report
Sponsorship
NIH T35 Physician Scientist Training Program
Major
Extent
Identifier
Relation
Journal
Source
Alternative Title
Type
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Full Text Available at
This item is under embargo {{howLong}}
Collections