Twist1 Inactivation in Dmp1-Expressing Cells Increases Bone Mass but Does Not Affect the Anabolic Response to Sclerostin Neutralization

dc.contributor.authorLewis, Karl J.
dc.contributor.authorChoi, Roy B.-J.
dc.contributor.authorPemberton, Emily Z.
dc.contributor.authorBullock, Whitney A.
dc.contributor.authorFirulli, Anthony B.
dc.contributor.authorRobling, Alexander G.
dc.contributor.departmentAnatomy and Cell Biology, School of Medicineen_US
dc.date.accessioned2019-10-24T20:24:08Z
dc.date.available2019-10-24T20:24:08Z
dc.date.issued2019-09-09
dc.description.abstractWnt signaling plays a major role in bone metabolism. Advances in our understanding of secreted regulators of Wnt have yielded several therapeutic targets to stimulate osteoanabolism—the most promising of which is the Wnt inhibitor sclerostin. Sclerostin antibody recently gained approval for clinical use to treat osteoporosis, but the biology surrounding sclerostin antagonism is still incompletely understood. Numerous factors regulate the efficacy of sclerostin inhibition on bone formation, a process known as self-regulation. In previous communications we reported that the basic helix-loop-helix transcription factor Twist1—a gene know to regulate skeletal development—is highly upregulated among the osteocyte cell population in mice treated with sclerostin antibody. In this communication, we tested the hypothesis that preventing Twist1 upregulation by deletion of Twist1 from late-stage osteoblasts and osteocytes would increase the efficacy of sclerostin antibody treatment, since Twist1 is known to restrain osteoblast activity in many models. Twist1-floxed loss-of-function mice were crossed to the Dmp1-Cre driver to delete Twist1 in Dmp1-expressing cells. Conditional Twist1 deletion was associated with a mild but significant increase in bone mass, as assessed by dual energy x-ray absorptiometry (DXA) and microCT (µCT) for many endpoints in both male and female mice. Biomechanical properties of the femur were not affected by conditional mutation of Twist1. Sclerostin antibody improved all bone properties significantly, regardless of Twist1 status, sex, or endpoint examined. No interactions were detected when Twist1 status and antibody treatment were examined together, suggesting that Twist1 upregulation in the osteocyte population is not an endogenous mechanism that restrains the osteoanabolic effect of sclerostin antibody treatment. In summary, Twist1 inhibition in the late-stage osteoblast/osteocyte increases bone mass but does not affect the anabolic response to sclerostin neutralization.en_US
dc.eprint.versionFinal published versionen_US
dc.identifier.citationLewis, K. J., Choi, R. B.-J., Pemberton, E. Z., Bullock, W. A., Firulli, A. B., & Robling, A. G. (2019). Twist1 Inactivation in Dmp1-Expressing Cells Increases Bone Mass but Does Not Affect the Anabolic Response to Sclerostin Neutralization. International Journal of Molecular Sciences, 20(18), 4427. https://doi.org/10.3390/ijms20184427en_US
dc.identifier.urihttps://hdl.handle.net/1805/21246
dc.language.isoen_USen_US
dc.publisherMDPIen_US
dc.relation.isversionof10.3390/ijms20184427en_US
dc.relation.journalInternational Journal of Molecular Sciencesen_US
dc.rightsAttribution 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/us/*
dc.sourcePublisheren_US
dc.subjectTwist1en_US
dc.subjectsclerostinen_US
dc.subjectosteoporosisen_US
dc.subjectosteocytesen_US
dc.subjectmechanotransductionen_US
dc.titleTwist1 Inactivation in Dmp1-Expressing Cells Increases Bone Mass but Does Not Affect the Anabolic Response to Sclerostin Neutralizationen_US
dc.typeArticleen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
ijms-20-04427.pdf
Size:
2.56 MB
Format:
Adobe Portable Document Format
Description:
Article
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.99 KB
Format:
Item-specific license agreed upon to submission
Description: