Detecting significant genotype-phenotype association rules in bipolar disorder: market research meets complex genetics

dc.contributor.authorBreuer, René
dc.contributor.authorMattheisen, Manuel
dc.contributor.authorFrank, Josef
dc.contributor.authorKrumm, Bertram
dc.contributor.authorTreutlein, Jens
dc.contributor.authorKassem, Layla
dc.contributor.authorStrohmaier, Jana
dc.contributor.authorHerms, Stefan
dc.contributor.authorMühleisen, Thomas W.
dc.contributor.authorDegenhardt, Franziska
dc.contributor.authorCichon, Sven
dc.contributor.authorNöthen, Markus M.
dc.contributor.authorKarypis, George
dc.contributor.authorKelsoe, John
dc.contributor.authorGreenwood, Tiffany
dc.contributor.authorNievergelt, Caroline
dc.contributor.authorShilling, Paul
dc.contributor.authorShekhtman, Tatyana
dc.contributor.authorEdenberg, Howard
dc.contributor.authorCraig, David
dc.contributor.authorSzelinger, Szabolcs
dc.contributor.authorNurnberger, John
dc.contributor.authorGershon, Elliot
dc.contributor.authorAlliey‑Rodriguez, Ney
dc.contributor.authorZandi, Peter
dc.contributor.authorGoes, Fernando
dc.contributor.authorSchork, Nicholas
dc.contributor.authorSmith, Erin
dc.contributor.authorKoller, Daniel
dc.contributor.authorZhang, Peng
dc.contributor.authorBadner, Judith
dc.contributor.authorBerrettini, Wade
dc.contributor.authorBloss, Cinnamon
dc.contributor.authorByerley, William
dc.contributor.authorCoryell, William
dc.contributor.authorForoud, Tatiana
dc.contributor.authorGuo, Yirin
dc.contributor.authorHipolito, Maria
dc.contributor.authorKeating, Brendan
dc.contributor.authorLawson, William
dc.contributor.authorLiu, Chunyu
dc.contributor.authorMahon, Pamela
dc.contributor.authorMcInnis, Melvin
dc.contributor.authorMurray, Sarah
dc.contributor.authorNwulia, Evaristus
dc.contributor.authorPotash, James
dc.contributor.authorRice, John
dc.contributor.authorScheftner, William
dc.contributor.authorZöllner, Sebastian
dc.contributor.authorMcMahon, Francis J.
dc.contributor.authorRietschel, Marcella
dc.contributor.authorSchulze, Thomas G.
dc.contributor.departmentBiochemistry and Molecular Biology, School of Medicineen_US
dc.date.accessioned2019-06-26T19:23:59Z
dc.date.available2019-06-26T19:23:59Z
dc.date.issued2018-11-11
dc.description.abstractBACKGROUND: Disentangling the etiology of common, complex diseases is a major challenge in genetic research. For bipolar disorder (BD), several genome-wide association studies (GWAS) have been performed. Similar to other complex disorders, major breakthroughs in explaining the high heritability of BD through GWAS have remained elusive. To overcome this dilemma, genetic research into BD, has embraced a variety of strategies such as the formation of large consortia to increase sample size and sequencing approaches. Here we advocate a complementary approach making use of already existing GWAS data: a novel data mining procedure to identify yet undetected genotype-phenotype relationships. We adapted association rule mining, a data mining technique traditionally used in retail market research, to identify frequent and characteristic genotype patterns showing strong associations to phenotype clusters. We applied this strategy to three independent GWAS datasets from 2835 phenotypically characterized patients with BD. In a discovery step, 20,882 candidate association rules were extracted. RESULTS: Two of these rules-one associated with eating disorder and the other with anxiety-remained significant in an independent dataset after robust correction for multiple testing. Both showed considerable effect sizes (odds ratio ~ 3.4 and 3.0, respectively) and support previously reported molecular biological findings. CONCLUSION: Our approach detected novel specific genotype-phenotype relationships in BD that were missed by standard analyses like GWAS. While we developed and applied our method within the context of BD gene discovery, it may facilitate identifying highly specific genotype-phenotype relationships in subsets of genome-wide data sets of other complex phenotype with similar epidemiological properties and challenges to gene discovery efforts.en_US
dc.eprint.versionFinal published versionen_US
dc.identifier.citationBreuer, R., Mattheisen, M., Frank, J., Krumm, B., Treutlein, J., Kassem, L., … Schulze, T. G. (2018). Detecting significant genotype-phenotype association rules in bipolar disorder: market research meets complex genetics. International journal of bipolar disorders, 6(1), 24. doi:10.1186/s40345-018-0132-xen_US
dc.identifier.urihttps://hdl.handle.net/1805/19695
dc.language.isoen_USen_US
dc.publisherSpringerOpenen_US
dc.relation.isversionof10.1186/s40345-018-0132-xen_US
dc.relation.journalInternational Journal of Bipolar Disordersen_US
dc.rightsAttribution 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/us/*
dc.sourcePMCen_US
dc.subjectBipolar disorderen_US
dc.subjectData miningen_US
dc.subjectGenotype–phenotype patternsen_US
dc.subjectRule discoveryen_US
dc.subjectSubphenotypesen_US
dc.titleDetecting significant genotype-phenotype association rules in bipolar disorder: market research meets complex geneticsen_US
dc.typeArticleen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
40345_2018_Article_132.pdf
Size:
1.23 MB
Format:
Adobe Portable Document Format
Description:
Main article
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.99 KB
Format:
Item-specific license agreed upon to submission
Description: