Multisite λ-Dynamics for Protein-DNA Binding Affinity Prediction

dc.contributor.authorAl Masri, Carmen
dc.contributor.authorVilseck, Jonah Z.
dc.contributor.authorYu, Jin
dc.contributor.authorHayes, Ryan L.
dc.contributor.departmentBiochemistry and Molecular Biology, School of Medicine
dc.date.accessioned2025-05-13T12:42:06Z
dc.date.available2025-05-13T12:42:06Z
dc.date.issued2025
dc.description.abstractTranscription factors (TFs) regulate gene expression by binding to specific DNA sequences, playing critical roles in cellular processes and disease pathways. Computational methods, particularly λ-Dynamics, offer a promising approach for predicting TF relative binding affinities. This study evaluates the effectiveness of different λ-Dynamics perturbation schemes in determining binding free energy changes (ΔΔGb) of the WRKY transcription factor upon mutating its W-box binding site (GGTCAA) to a nonspecific sequence (GATAAA). Among the schemes tested, the single λ per base pair protocol demonstrated the fastest convergence and highest precision. Extending this protocol to additional mutants (GGTCCG and GGACAA) yielded ΔΔGb values that successfully ranked binding affinities, showcasing its strong potential for high-throughput screening of DNA binding sites.
dc.eprint.versionFinal published version
dc.identifier.citationAl Masri C, Vilseck JZ, Yu J, Hayes RL. Multisite λ-Dynamics for Protein-DNA Binding Affinity Prediction. J Chem Theory Comput. 2025;21(7):3536-3544. doi:10.1021/acs.jctc.4c01408
dc.identifier.urihttps://hdl.handle.net/1805/48036
dc.language.isoen_US
dc.publisherACS
dc.relation.isversionof10.1021/acs.jctc.4c01408
dc.relation.journalJournal of Chemical Theory and Computation
dc.rightsAttribution 4.0 Internationalen
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.sourcePMC
dc.subjectBase pairing
dc.subjectBinding sites
dc.subjectDNA
dc.subjectEntropy
dc.subjectMolecular dynamics simulation
dc.subjectTranscription factors
dc.titleMultisite λ-Dynamics for Protein-DNA Binding Affinity Prediction
dc.typeArticle
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
AlMasri2025Multisite-CCBY.pdf
Size:
2.82 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
2.04 KB
Format:
Item-specific license agreed upon to submission
Description: