Pre-processing of Galaxies in the Early Stages of Cluster Formation in Abell 1882 at z=0.139

If you need an accessible version of this item, please submit a remediation request.
Date
2022
Language
American English
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
American Astronomical Society
Abstract

A rare opportunity to distinguish between internal and environmental effects on galaxy evolution is afforded by “SuperGroups,” systems that are rich and massive, but include several comparably rich substructures, surrounded by filaments. We present here a multiwavelength photometric and spectroscopic study of the galaxy population in the SuperGroup Abell 1882 (A1882) at z = 0.139, combining new data from the MMT and Hectospec with archival results from the Galaxy And Mass Assembly survey, the Sloan Digital Sky Survey, the Nasa/IPAC Extragalactic Database, the Gemini Multi-Object Spectrograph, and the Galaxy Evolution Explorer. These provide spectroscopic classifications for 526 member galaxies, across wide ranges of local density and velocity dispersion. We identify three prominent filaments along which galaxies seem to be entering the SuperGroup (mostly in E–W directions). A1882 has a well-populated red sequence, containing most galaxies with stellar mass >1010.5 M Sun, and a pronounced color–density relation even within its substructures. Thus, galaxy evolution responds to the external environment as strongly in these unrelaxed systems as we find in rich and relaxed clusters. From these data, local density remains the primary factor, with a secondary role for distance from the inferred center of the entire structure’s potential well. The effects on star formation, as traced by optical and near-UV colors, depend on galaxy mass. We see changes in lower-mass galaxies (M < 1010.5 M Sun) at four times the virial radius of major substructures, while the more massive near-UV Green Valley galaxies show low levels of star formation within two virial radii. The suppression of star formation (“quenching”) occurs in the infall regions of these structures even before the galaxies enter the denser group environment.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Sengupta A, Keel WC, Morrison G, Windhorst RA, Miller N, Smith B. The Preprocessing of Galaxies in the Early Stages of Cluster Formation in Abell 1882 at z = 0.139. ApJS. 2022;258(2):32. doi:10.3847/1538-4365/ac3761
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
The Astrophysical Journal Supplement Series
Source
Publisher
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Final published version
Full Text Available at
This item is under embargo {{howLong}}