OC_Finder: Osteoclast Segmentation, Counting, and Classification Using Watershed and Deep Learning

dc.contributor.authorWang, Xiao
dc.contributor.authorKittaka, Mizuho
dc.contributor.authorHe, Yilin
dc.contributor.authorZhang, Yiwei
dc.contributor.authorUeki, Yasuyoshi
dc.contributor.authorKihara, Daisuke
dc.contributor.departmentBiomedical Sciences and Comprehensive Care, School of Dentistryen_US
dc.date.accessioned2023-06-13T17:10:45Z
dc.date.available2023-06-13T17:10:45Z
dc.date.issued2022
dc.description.abstractOsteoclasts are multinucleated cells that exclusively resorb bone matrix proteins and minerals on the bone surface. They differentiate from monocyte/macrophage lineage cells in the presence of osteoclastogenic cytokines such as the receptor activator of nuclear factor-κB ligand (RANKL) and are stained positive for tartrate-resistant acid phosphatase (TRAP). In vitro osteoclast formation assays are commonly used to assess the capacity of osteoclast precursor cells for differentiating into osteoclasts wherein the number of TRAP-positive multinucleated cells is counted as osteoclasts. Osteoclasts are manually identified on cell culture dishes by human eyes, which is a labor-intensive process. Moreover, the manual procedure is not objective and results in lack of reproducibility. To accelerate the process and reduce the workload for counting the number of osteoclasts, we developed OC_Finder, a fully automated system for identifying osteoclasts in microscopic images. OC_Finder consists of cell image segmentation with a watershed algorithm and cell classification using deep learning. OC_Finder detected osteoclasts differentiated from wild-type and Sh3bp2 KI/+ precursor cells at a 99.4% accuracy for segmentation and at a 98.1% accuracy for classification. The number of osteoclasts classified by OC_Finder was at the same accuracy level with manual counting by a human expert. OC_Finder also showed consistent performance on additional datasets collected with different microscopes with different settings by different operators. Together, successful development of OC_Finder suggests that deep learning is a useful tool to perform prompt and accurate unbiased classification and detection of specific cell types in microscopic images.en_US
dc.eprint.versionFinal published versionen_US
dc.identifier.citationWang X, Kittaka M, He Y, Zhang Y, Ueki Y, Kihara D. OC_Finder: Osteoclast segmentation, counting, and classification using watershed and deep learning. Front Bioinform. 2022;2:819570. doi:10.3389/fbinf.2022.819570en_US
dc.identifier.urihttps://hdl.handle.net/1805/33721
dc.language.isoen_USen_US
dc.publisherFrontiers Mediaen_US
dc.relation.isversionof10.3389/fbinf.2022.819570en_US
dc.relation.journalFrontiers in Bioinformaticsen_US
dc.rightsAttribution 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.sourcePMCen_US
dc.subjectDeep learningen_US
dc.subjectOsteoclast segmentationen_US
dc.subjectOsteoclast countingen_US
dc.subjectAutomatic segmentationen_US
dc.subjectOpen source softwareen_US
dc.titleOC_Finder: Osteoclast Segmentation, Counting, and Classification Using Watershed and Deep Learningen_US
dc.typeArticleen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
fbinf-02-819570.pdf
Size:
3.66 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.99 KB
Format:
Item-specific license agreed upon to submission
Description: