MicroRNA-101 downregulates Alzheimer's amyloid-β precursor protein levels in human cell cultures and is differentially expressed

Date
2011
Language
American English
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Elsevier
Can't use the file because of accessibility barriers? Contact us with the title of the item, permanent link, and specifics of your accommodation need.
Abstract

The full repertoire of regulatory interactions utilized by human cells to control expression of amyloid-β precursor protein (APP) is still undefined. We investigated here the contribution of microRNA (miRNA) to this regulatory network. Several bioinformatic algorithms predicted miR-101 target sites within the APP 3'-untranslated region (3'-UTR). Using reporter assays, we confirmed that, in human cell cultures, miR-101 significantly reduced the expression of a reporter under control of APP 3'-UTR. Mutation of predicted site 1, but not site 2, eliminated this reporter response. Delivery of miR-101 directly to human HeLa cells significantly reduced APP levels and this effect was eliminated by co-transfection with a miR-101 antisense inhibitor. Delivery of a specific target protector designed to blockade the interaction between miR-101 and its functional target site within APP 3'-UTR enhanced APP levels in HeLa. Therefore, endogenous miR-101 regulates expression of APP in human cells via a specific site located within its 3'-UTR. Finally, we demonstrate that, across a series of human cell lines, highest expression of miR-101 levels was observed in model NT2 neurons.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Long JM, Lahiri DK. MicroRNA-101 downregulates Alzheimer's amyloid-β precursor protein levels in human cell cultures and is differentially expressed. Biochem Biophys Res Commun. 2011;404(4):889-895. doi:10.1016/j.bbrc.2010.12.053
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Biochemical and Biophysical Research Communications
Source
PMC
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Author's manuscript
Full Text Available at
This item is under embargo {{howLong}}