Sclerostin Directly Stimulates Osteocyte Synthesis of Fibroblast Growth Factor-23

dc.contributor.authorIto, Nobuaki
dc.contributor.authorPrideaux, Matthew
dc.contributor.authorWijenayaka, Asiri R.
dc.contributor.authorYang, Dongqing
dc.contributor.authorOrmsby, Renee T.
dc.contributor.authorBonewald, Lynda F.
dc.contributor.authorAtkins, Gerald J
dc.contributor.departmentMedicine, School of Medicine
dc.date.accessioned2024-03-19T10:51:21Z
dc.date.available2024-03-19T10:51:21Z
dc.date.issued2021
dc.description.abstractOsteocyte produced fibroblast growth factor 23 (FGF23) is the key regulator of serum phosphate (Pi) homeostasis. The interplay between parathyroid hormone (PTH), FGF23 and other proteins that regulate FGF23 production and serum Pi levels is complex and incompletely characterised. Evidence suggests that the protein product of the SOST gene, sclerostin (SCL), also a PTH target and also produced by osteocytes, plays a role in FGF23 expression, however the mechanism for this effect is unclear. Part of the problem of understanding the interplay of these mediators is the complex multi-organ system that achieves Pi homeostasis in vivo. In the current study, we sought to address this using a cell line model of the osteocyte, IDG-SW3, known to express FGF23 at both the mRNA and protein levels. In cultures of differentiated IDG-SW3 cells, both PTH1-34 and recombinant human (rh) SCL remarkably induced Fgf23 mRNA expression dose-dependently within 3 h. Both rhPTH1-34 and rhSCL also strongly induced C-terminal FGF23 protein secretion. Secreted intact FGF23 levels remained unchanged, consistent with constitutive post-translational cleavage of FGF23 in this cell model. Both rhPTH1-34 and rhSCL treatments significantly suppressed mRNA levels of Phex, Dmp1 and Enpp1 mRNA, encoding putative negative regulators of FGF23 levels, and induced Galnt3 mRNA expression, encoding N-acetylgalactosaminyl-transferase 3 (GalNAc-T3), which protects FGF23 from furin-like proprotein convertase-mediated cleavage. The effect of both rhPTH1-34 and rhSCL was antagonised by pre-treatment with the NF-κβ signalling inhibitors, BAY11 and TPCK. RhSCL also stimulated FGF23 mRNA expression in ex vivo cultures of human bone. These findings provide evidence for the direct regulation of FGF23 expression by sclerostin. Locally expressed sclerostin via the induction of FGF23 in osteocytes thus has the potential to contribute to the regulation of Pi homeostasis.
dc.eprint.versionPre-Print
dc.identifier.citationIto N, Prideaux M, Wijenayaka AR, et al. Sclerostin Directly Stimulates Osteocyte Synthesis of Fibroblast Growth Factor-23. Calcif Tissue Int. 2021;109(1):66-76. doi:10.1007/s00223-021-00823-6
dc.identifier.urihttps://hdl.handle.net/1805/39340
dc.language.isoen_US
dc.publisherSpringer
dc.relation.isversionof10.1007/s00223-021-00823-6
dc.relation.journalCalcified Tissue International
dc.rightsPublisher Policy
dc.sourcePMC
dc.subjectFGF23
dc.subjectIDG-SW3
dc.subjectPTH
dc.subjectPhosphate homeostasis
dc.subjectSOST
dc.subjectSclerostin
dc.titleSclerostin Directly Stimulates Osteocyte Synthesis of Fibroblast Growth Factor-23
dc.typeArticle
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2020.10.29.360024.full.pdf
Size:
172.3 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.99 KB
Format:
Item-specific license agreed upon to submission
Description: