Microscale sulfur cycling in the phototrophic pink berry consortia of the Sippewissett Salt Marsh

dc.contributor.authorWilbanks, Elizabeth G.
dc.contributor.authorJaekel, Ulrike
dc.contributor.authorSalman, Verena
dc.contributor.authorHumphrey, Parris T.
dc.contributor.authorEisen, Jonathan A.
dc.contributor.authorFacciotti, Marc T.
dc.contributor.authorBuckley, Daniel H.
dc.contributor.authorZinder, Stephen H.
dc.contributor.authorDruschel, Gregory K.
dc.contributor.authorFike, David A.
dc.contributor.authorOrphan, Victoria J.
dc.contributor.departmentDepartment of Earth Sciences, School of Scienceen_US
dc.date.accessioned2016-04-11T15:10:14Z
dc.date.available2016-04-11T15:10:14Z
dc.date.issued2014-11
dc.description.abstractMicrobial metabolism is the engine that drives global biogeochemical cycles, yet many key transformations are carried out by microbial consortia over short spatiotemporal scales that elude detection by traditional analytical approaches. We investigate syntrophic sulfur cycling in the 'pink berry' consortia of the Sippewissett Salt Marsh through an integrative study at the microbial scale. The pink berries are macroscopic, photosynthetic microbial aggregates composed primarily of two closely associated species: sulfide-oxidizing purple sulfur bacteria (PB-PSB1) and sulfate-reducing bacteria (PB-SRB1). Using metagenomic sequencing and (34) S-enriched sulfate stable isotope probing coupled with nanoSIMS, we demonstrate interspecies transfer of reduced sulfur metabolites from PB-SRB1 to PB-PSB1. The pink berries catalyse net sulfide oxidation and maintain internal sulfide concentrations of 0-500 μm. Sulfide within the berries, captured on silver wires and analysed using secondary ion mass spectrometer, increased in abundance towards the berry interior, while δ(34) S-sulfide decreased from 6‰ to -31‰ from the exterior to interior of the berry. These values correspond to sulfate-sulfide isotopic fractionations (15-53‰) consistent with either sulfate reduction or a mixture of reductive and oxidative metabolisms. Together this combined metagenomic and high-resolution isotopic analysis demonstrates active sulfur cycling at the microscale within well-structured macroscopic consortia consisting of sulfide-oxidizing anoxygenic phototrophs and sulfate-reducing bacteria.en_US
dc.eprint.versionFinal published versionen_US
dc.identifier.citationWilbanks, E. G., Jaekel, U., Salman, V., Humphrey, P. T., Eisen, J. A., Facciotti, M. T., … Orphan, V. J. (2014). Microscale sulfur cycling in the phototrophic pink berry consortia of the Sippewissett Salt Marsh. Environmental Microbiology, 16(11), 3398–3415. http://doi.org/10.1111/1462-2920.12388en_US
dc.identifier.issn1462-2920en_US
dc.identifier.urihttps://hdl.handle.net/1805/9247
dc.language.isoen_USen_US
dc.publisherWiley Blackwell (Blackwell Publishing)en_US
dc.relation.isversionof10.1111/1462-2920.12388en_US
dc.relation.journalEnvironmental Microbiologyen_US
dc.rightsAttribution 3.0 Unported
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/
dc.sourcePublisheren_US
dc.subjectBacteriaen_US
dc.subjectmetabolismen_US
dc.subjectChromatiaceaeen_US
dc.subjectMicrobial Consortiaen_US
dc.subjectSulfuren_US
dc.subjectWetlandsen_US
dc.titleMicroscale sulfur cycling in the phototrophic pink berry consortia of the Sippewissett Salt Marshen_US
dc.typeArticleen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Wilbanks_et_al-2014-Environmental_Microbiology.pdf
Size:
1.42 MB
Format:
Adobe Portable Document Format