Strong Asymptotics of Jacobi-Type Kissing Polynomials

dc.contributor.authorBarhoumi, Ahmad
dc.contributor.departmentMathematical Sciences, School of Science
dc.date.accessioned2024-04-03T10:56:17Z
dc.date.available2024-04-03T10:56:17Z
dc.date.issued2021
dc.description.abstractWe investigate asymptotic behaviour of polynomials pnω(z) satisfying varying non-Hermitian orthogonality relations ∫−11xkpnω(x)h(x)eiωxdx=0,k∈0,…,n−1, where h(x)=h∗(x)(1−x)α(1+x)β, ω=λn, λ≥ 0 and h(x) is holomorphic and non-vanishing in a certain neighbourhood in the plane. These polynomials are an extension of so-called kissing polynomials ( α=β=0) introduced in Asheim et al. [A Gaussian quadrature rule for oscillatory integrals on a bounded interval. Preprint, 2012 Dec 6. arXiv:1212.1293] in connection with complex Gaussian quadrature rules with uniform good properties in ω. The analysis carried out here is an extension of what was done in Celsus and Silva [Supercritical regime for the kissing polynomials. J Approx Theory. 2020 Mar 18;225:Article ID: 105408]; Deaño [Large degree asymptotics of orthogonal polynomials with respect to an oscillatory weight on a bounded interval. J Approx Theory. 2014 Oct 1;186:33–63], and depends heavily on those works.
dc.eprint.versionAuthor's manuscript
dc.identifier.citationBarhoumi AB. Strong asymptotics of Jacobi-type kissing polynomials. Integral Transforms and Special Functions. 2021;32(5-8):377-394. doi:10.1080/10652469.2021.1923707
dc.identifier.urihttps://hdl.handle.net/1805/39712
dc.language.isoen_US
dc.publisherTaylor & Francis
dc.relation.isversionof10.1080/10652469.2021.1923707
dc.relation.journalIntegral Transforms and Special Functions
dc.rightsAttribution 4.0 Internationalen
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.sourceArXiv
dc.subjectNon-Hermitian orthogonality
dc.subjectRiemann–Hilbert analysis
dc.subjectVarying orthogonality
dc.titleStrong Asymptotics of Jacobi-Type Kissing Polynomials
dc.typeArticle
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Barhoumi2021Strong-AAM.pdf
Size:
468.79 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.99 KB
Format:
Item-specific license agreed upon to submission
Description: