Disrupting nNOS–PSD95 Interaction Improves Neurological and Cognitive Recoveries after Traumatic Brain Injury

If you need an accessible version of this item, please email your request to digschol@iu.edu so that they may create one and provide it to you.
Date
2020-06
Language
American English
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Oxford University Press
Abstract

Excessive activation of N-methyl-D-aspartate receptors (NMDARs) and the resulting neuronal nitric oxide synthase (nNOS) activation plays a crucial role in the pathogenesis of traumatic brain injury (TBI). However, directly inhibiting NMDARs or nNOS produces adverse side effects because they play key physiological roles in the normal brain. Since interaction of nNOS–PSD95 is a key step in NMDAR-mediated excitotoxicity, we investigated whether disrupting nNOS–PSD95 interaction with ZL006, an inhibitor of nNOS–PSD95 interaction, attenuates NMDAR-mediated excitotoxicity. In cortical neuronal cultures, ZL006 treatment significantly reduced glutamate-induced neuronal death. In a mouse model of controlled cortical impact (CCI), administration of ZL006 (10 mg/kg, i.p.) at 30 min postinjury significantly inhibited nNOS–PSD95 interaction, reduced TUNEL- and phospho-p38-positive neurons in the motor cortex. ZL006 treatment also significantly reduced CCI-induced cortical expression of apoptotic markers active caspase-3, PARP-1, ratio of Bcl-2/Bax, and phosphorylated p38 MAPK (p-p38). Functionally, ZL006 treatment significantly improved neuroscores and sensorimotor performance, reduced somatosensory and motor deficits, reversed CCI-induced memory deficits, and attenuated cognitive impairment. Histologically, ZL006 treatment significantly reduced the brain lesion volume. These findings collectively suggest that blocking nNOS–PSD95 interaction represents an attractive strategy for ameliorating consequences of TBI and that its action is mediated via inhibiting neuronal apoptosis and p38 MAPK signaling.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Qu W, Liu NK, Wu X, et al. Disrupting nNOS-PSD95 Interaction Improves Neurological and Cognitive Recoveries after Traumatic Brain Injury. Cereb Cortex. 2020;30(7):3859-3871. doi:10.1093/cercor/bhaa002
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Cerebral Cortex
Source
PMC
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Final published version
This item is under embargo {{howLong}}