EnvCNN: A Convolutional Neural Network Model for Evaluating Isotopic Envelopes in Top-Down Mass-Spectral Deconvolution

dc.contributor.authorBasharat, Abdul Rehman
dc.contributor.authorNing, Xia
dc.contributor.authorLiu, Xiaowen
dc.contributor.departmentBioHealth Informatics, School of Informatics and Computingen_US
dc.date.accessioned2020-06-25T15:49:59Z
dc.date.available2020-06-25T15:49:59Z
dc.date.issued2020-06
dc.description.abstractTop-down mass spectrometry has become the main method for intact proteoform identification, characterization, and quantitation. Because of the complexity of top-down mass spectrometry data, spectral deconvolution is an indispensable step in spectral data analysis, which groups spectral peaks into isotopic envelopes and extracts monoisotopic masses of precursor or fragment ions. The performance of spectral deconvolution methods relies heavily on their scoring functions, which distinguish correct envelopes from incorrect ones. A good scoring function increases the accuracy of deconvoluted masses reported from mass spectra. In this paper, we present EnvCNN, a convolutional neural network-based model for evaluating isotopic envelopes. We show that the model outperforms other scoring functions in distinguishing correct envelopes from incorrect ones and that it increases the number of identifications and improves the statistical significance of identifications in top-down spectral interpretation.en_US
dc.eprint.versionAuthor's manuscripten_US
dc.identifier.citationBasharat, A. R., Ning, X., & Liu, X. (2020). EnvCNN: A Convolutional Neural Network Model for Evaluating Isotopic Envelopes in Top-Down Mass-spectral Deconvolution. Analytical Chemistry, 92(11), 7778–7785. https://doi.org/10.1021/acs.analchem.0c00903en_US
dc.identifier.urihttps://hdl.handle.net/1805/23088
dc.language.isoenen_US
dc.publisherACSen_US
dc.relation.isversionof10.1021/acs.analchem.0c00903en_US
dc.relation.journalAnalytical Chemistryen_US
dc.rightsPublisher Policyen_US
dc.sourceAuthoren_US
dc.subjectmass spectrometryen_US
dc.subjectEnvCNNen_US
dc.subjectisotopic envelopesen_US
dc.titleEnvCNN: A Convolutional Neural Network Model for Evaluating Isotopic Envelopes in Top-Down Mass-Spectral Deconvolutionen_US
dc.typeArticleen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Basharat_2020_EnvCNN.pdf
Size:
595.57 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.99 KB
Format:
Item-specific license agreed upon to submission
Description: