Federated learning as a catalyst for digital healthcare innovations

dc.contributor.authorYang, Guang
dc.contributor.authorEdwards, Brandon
dc.contributor.authorBakas, Spyridon
dc.contributor.authorDou, Qi
dc.contributor.authorXu, Daguang
dc.contributor.authorLi, Xiaoxiao
dc.contributor.authorWang, Wanying
dc.contributor.departmentPathology and Laboratory Medicine, School of Medicine
dc.date.accessioned2024-09-20T11:45:47Z
dc.date.available2024-09-20T11:45:47Z
dc.date.issued2024-07-12
dc.eprint.versionFinal published version
dc.identifier.citationYang G, Edwards B, Bakas S, et al. Federated learning as a catalyst for digital healthcare innovations. Patterns (N Y). 2024;5(7):101026. Published 2024 Jul 12. doi:10.1016/j.patter.2024.101026
dc.identifier.urihttps://hdl.handle.net/1805/43463
dc.language.isoen_US
dc.publisherElsevier
dc.relation.isversionof10.1016/j.patter.2024.101026
dc.relation.journalPatterns
dc.rightsAttribution 4.0 Internationalen
dc.rights.urihttps://creativecommons.org/licenses/by/4.0
dc.sourcePMC
dc.subjectDigital healthcare
dc.subjectArtificial intelligence (AI)
dc.subjectFederated learning
dc.titleFederated learning as a catalyst for digital healthcare innovations
dc.typeArticle
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Yang2024Federated-CCBY.pdf
Size:
181.25 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
2.04 KB
Format:
Item-specific license agreed upon to submission
Description: