Heparinized Gelatin-Based Hydrogels for Differentiation of Induced Pluripotent Stem Cells

Date
2022
Language
American English
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
American Chemical Society
Abstract

Chemically defined hydrogels are increasingly utilized to define the effects of extracellular matrix (ECM) components on cellular fate determination of human embryonic and induced pluripotent stem cell (hESC and hiPSCs). In particular, hydrogels cross-linked by orthogonal click chemistry, including thiol-norbornene photopolymerization and inverse electron demand Diels-Alder (iEDDA) reactions, are explored for 3D culture of hESC/hiPSCs owing to the specificity, efficiency, cytocompatibility, and modularity of the cross-linking reactions. In this work, we exploited the modularity of thiol-norbornene photopolymerization to create a biomimetic hydrogel platform for 3D culture and differentiation of hiPSCs. A cell-adhesive, protease-labile, and cross-linkable gelatin derivative, gelatin-norbornene (GelNB), was used as the backbone polymer for constructing hiPSC-laden biomimetic hydrogels. GelNB was further heparinized via the iEDDA click reaction using tetrazine-modified heparin (HepTz), creating GelNB-Hep. GelNB or GelNB-Hep was modularly cross-linked with either inert macromer poly(ethylene glycol)-tetra-thiol (PEG4SH) or another bioactive macromer-thiolated hyaluronic acid (THA). The formulations of these hydrogels were modularly tuned to afford biomimetic matrices with similar elastic moduli but varying bioactive components, enabling the understanding of each bioactive component on supporting hiPSC growth and ectodermal, mesodermal, and endodermal fate commitment under identical soluble differentiation cues.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Arkenberg MR, Koehler K, Lin CC. Heparinized Gelatin-Based Hydrogels for Differentiation of Induced Pluripotent Stem Cells. Biomacromolecules. 2022;23(10):4141-4152. doi:10.1021/acs.biomac.2c00585
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Biomacromolecules
Source
PMC
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Final published version
Full Text Available at
This item is under embargo {{howLong}}