Mapping immunological and host receptor binding determinants of SARS-CoV spike protein utilizing the Qubevirus platform

Date
2023
Language
American English
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Elsevier
Abstract

The motifs involved in tropism and immunological interactions of SARS-CoV spike (S) protein were investigated utilizing the Qubevirus platform. We showed that separately, 14 overlapping peptide fragments representing the S protein (F1-14 of 100 residues each) could be inserted into the C terminus of A1 on recombinant Qubevirus without affecting its viability. Additionally, recombinant phage expression resulted in the surface exposure of different engineered fragments in an accessible manner. The F6 from S425-525 was found to contain the binding determinant of the recombinant human angiotensin-converting enzyme 2, with the shortest active binding motif situated between residues S437-492. Upstream, another fragment, F7, containing an overlapping portion of F6 would not bind to recombinant human angiotensin-converting enzyme 2, confirming that a contiguous stretch of residues could adopt the appropriate structural orientation of F6 as an insertion within the Qubevirus. The F6 (S441-460) and other inserts, including F7/F8 (S601-620) and F10 (S781-800), were demonstrated to contain important immunological determinants through recognition and binding of S protein specific (anti-S) antibodies. An engineered chimeric insert bearing the fusion of all three anti-S reactive epitopes improved substantially the recognition and binding to their cognate antibodies. These results provide insights into humoral immune relevant epitopes and tropism characteristics of the S protein with implications for the development of subunit vaccines or other biologics against SARS-CoV.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Sanders C, Dzelamonyuy A, Ntemafack A, et al. Mapping immunological and host receptor binding determinants of SARS-CoV spike protein utilizing the Qubevirus platform. J Biol Chem. 2023;299(12):105460. doi:10.1016/j.jbc.2023.105460
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Journal of Biological Chemistry
Source
PMC
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Final published version
Full Text Available at
This item is under embargo {{howLong}}