Plcg2M28L Interacts With High Fat/High Sugar Diet to Accelerate Alzheimer's Disease-Relevant Phenotypes in Mice

dc.contributor.authorOblak, Adrian L.
dc.contributor.authorKotredes, Kevin P.
dc.contributor.authorPandey, Ravi S.
dc.contributor.authorReagan, Alaina M.
dc.contributor.authorIngraham, Cynthia
dc.contributor.authorPerkins, Bridget
dc.contributor.authorLloyd, Christopher
dc.contributor.authorBaker, Deborah
dc.contributor.authorLin, Peter B.
dc.contributor.authorSoni, Disha M.
dc.contributor.authorTsai, Andy P.
dc.contributor.authorPersohn, Scott A.
dc.contributor.authorBedwell, Amanda A.
dc.contributor.authorEldridge, Kierra
dc.contributor.authorSpeedy, Rachael
dc.contributor.authorMeyer, Jill A.
dc.contributor.authorPeters, Johnathan S.
dc.contributor.authorFigueiredo, Lucas L.
dc.contributor.authorSasner, Michael
dc.contributor.authorTerrito, Paul R.
dc.contributor.authorSukoff Rizzo, Stacey J.
dc.contributor.authorCarter, Gregory W.
dc.contributor.authorLamb, Bruce T.
dc.contributor.authorHowell, Gareth R.
dc.contributor.departmentRadiology and Imaging Sciences, School of Medicine
dc.date.accessioned2023-07-26T15:23:25Z
dc.date.available2023-07-26T15:23:25Z
dc.date.issued2022-06-24
dc.description.abstractObesity is recognized as a significant risk factor for Alzheimer's disease (AD). Studies have supported the notion that obesity accelerates AD-related pathophysiology in mouse models of AD. The majority of studies, to date, have focused on the use of early-onset AD models. Here, we evaluate the impact of genetic risk factors on late-onset AD (LOAD) in mice fed with a high fat/high sugar diet (HFD). We focused on three mouse models created through the IU/JAX/PITT MODEL-AD Center. These included a combined risk model with APOE4 and a variant in triggering receptor expressed on myeloid cells 2 (Trem2R47H ). We have termed this model, LOAD1. Additional variants including the M28L variant in phospholipase C Gamma 2 (Plcg2M28L ) and the 677C > T variant in methylenetetrahydrofolate reductase (Mthfr 677C > T ) were engineered by CRISPR onto LOAD1 to generate LOAD1.Plcg2M28L and LOAD1.Mthfr 677C > T . At 2 months of age, animals were placed on an HFD that induces obesity or a control diet (CD), until 12 months of age. Throughout the study, blood was collected to assess the levels of cholesterol and glucose. Positron emission tomography/computed tomography (PET/CT) was completed prior to sacrifice to image for glucose utilization and brain perfusion. After the completion of the study, blood and brains were collected for analysis. As expected, animals fed a HFD, showed a significant increase in body weight compared to those fed a CD. Glucose increased as a function of HFD in females only with cholesterol increasing in both sexes. Interestingly, LOAD1.Plcg2M28L demonstrated an increase in microglia density and alterations in regional brain glucose and perfusion on HFD. These changes were not observed in LOAD1 or LOAD1.Mthfr 677C > T animals fed with HFD. Furthermore, LOAD1.Plcg2M28L but not LOAD1.Mthfr 677C > T or LOAD1 animals showed transcriptomics correlations with human AD modules. Our results show that HFD affects the brain in a genotype-specific manner. Further insight into this process may have significant implications for the development of lifestyle interventions for the treatment of AD.
dc.eprint.versionFinal published version
dc.identifier.citationOblak AL, Kotredes KP, Pandey RS, et al. Plcg2M28L Interacts With High Fat/High Sugar Diet to Accelerate Alzheimer's Disease-Relevant Phenotypes in Mice. Front Aging Neurosci. 2022;14:886575. Published 2022 Jun 24. doi:10.3389/fnagi.2022.886575
dc.identifier.urihttps://hdl.handle.net/1805/34577
dc.language.isoen_US
dc.publisherFrontiers Media
dc.relation.isversionof10.3389/fnagi.2022.886575
dc.relation.journalFrontiers in Aging Neuroscience
dc.rightsAttribution 4.0 Internationalen
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.sourcePMC
dc.subjectAlzheimer’s disease
dc.subjectDiet
dc.subjectGenetic risk alleles
dc.subjectObesity
dc.subjectPredisposition
dc.subjectTranscriptomics
dc.titlePlcg2M28L Interacts With High Fat/High Sugar Diet to Accelerate Alzheimer's Disease-Relevant Phenotypes in Mice
dc.typeArticle
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
fnagi-14-886575.pdf
Size:
6.86 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.99 KB
Format:
Item-specific license agreed upon to submission
Description: