Virulence adaption to environment promotes the age-dependent nasal colonization of Staphylococcus aureus

Date
2022
Language
American English
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Taylor & Francis
Abstract

Staphylococcus aureus is an important human commensal bacteria colonizing the human body, especially the nasal cavity. The nasal carriage can be a source of S. aureus bacteremia. However, the bacterial factors contributing to nasal colonization are not completely understood. By analysing S. aureus strains from the nasal cavity of the children, young adults, and seniors, we found that the low activity of the SaeRS two-component system (TCS) is an important determinant for S. aureus to colonize in seniors. The senior group isolates of S. aureus showed a rather distinct sequence type composition as compared with other age group isolates. The senior group isolates showed not only a lower gene carriage of enterotoxins a, c, and q but also lower hemolytic activity against human red blood cells. Of regulators affecting hemolysin production (i.e. agr, saeRS, rot, rsp, and sarS), only the SaeRS TCS showed an age-dependent decrease of activity. The decreased virulence and better colonization ability of the senior group isolates of S. aureus were confirmed in the mouse model. The senior group isolates showed the lowest survival and the best adhesion and colonizing ability. Also, the senior nasal secretions supported S. aureus survival better than the child and young adult nasal secretions. These results indicated that the senior nasal cavity favours colonization of S. aureus with higher adhesion and lower virulence, to which the reduced SaeRS TCS activity contributes. Taken together, our results illustrate an example of bacterial adaptation to the changing host environment.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Zhao N, Cheng D, Yang Z, et al. Virulence adaption to environment promotes the age-dependent nasal colonization of Staphylococcus aureus. Emerg Microbes Infect. 2022;11(1):1402-1415. doi:10.1080/22221751.2022.2074316
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Emerging Microbes & Infection
Source
PMC
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Final published version
Full Text Available at
This item is under embargo {{howLong}}