Text mining for drug-drug interaction

If you need an accessible version of this item, please email your request to digschol@iu.edu so that they may create one and provide it to you.
Date
2014
Language
American English
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Springer-Verlag
Abstract

In order to understand the mechanisms of drug-drug interaction (DDI), the study of pharmacokinetics (PK), pharmacodynamics (PD), and pharmacogenetics (PG) data are significant. In recent years, drug PK parameters, drug interaction parameters, and PG data have been unevenly collected in different databases and published extensively in literature. Also the lack of an appropriate PK ontology and a well-annotated PK corpus, which provide the background knowledge and the criteria of determining DDI, respectively, lead to the difficulty of developing DDI text mining tools for PK data collection from the literature and data integration from multiple databases.To conquer the issues, we constructed a comprehensive pharmacokinetics ontology. It includes all aspects of in vitro pharmacokinetics experiments, in vivo pharmacokinetics studies, as well as drug metabolism and transportation enzymes. Using our pharmacokinetics ontology, a PK corpus was constructed to present four classes of pharmacokinetics abstracts: in vivo pharmacokinetics studies, in vivo pharmacogenetic studies, in vivo drug interaction studies, and in vitro drug interaction studies. A novel hierarchical three-level annotation scheme was proposed and implemented to tag key terms, drug interaction sentences, and drug interaction pairs. The utility of the pharmacokinetics ontology was demonstrated by annotating three pharmacokinetics studies; and the utility of the PK corpus was demonstrated by a drug interaction extraction text mining analysis.The pharmacokinetics ontology annotates both in vitro pharmacokinetics experiments and in vivo pharmacokinetics studies. The PK corpus is a highly valuable resource for the text mining of pharmacokinetics parameters and drug interactions.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Wu, H.-Y., Chiang, C.-W., & Li, L. (2014). Text Mining for Drug–Drug Interaction. Methods in Molecular Biology (Clifton, N.J.), 1159, 47–75. http://doi.org/10.1007/978-1-4939-0709-0_4
ISSN
1940-6029
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Methods in Molecular Biology (Clifton, N.J.)
Source
PMC
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Author's manuscript
Full Text Available at
This item is under embargo {{howLong}}