Cell adhesion molecule CD166 drives malignant progression and osteolytic disease in multiple myeloma
Date
Language
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Abstract
Multiple myeloma (MM) is incurable once osteolytic lesions have seeded at skeletal sites, but factors mediating this deadly pathogenic advance remain poorly understood. Here we report evidence of a major role for the cell adhesion molecule CD166, which we discovered to be highly expressed in MM cell lines and primary bone marrow (BM) cells from patients. CD166+ MM cells homed more efficiently than CD166− cells to the BM of engrafted immunodeficient NSG mice. CD166 silencing in MM cells enabled longer survival, a smaller tumor burden and less osteolytic lesions, as compared to mice bearing control cells. CD166 deficiency in MM cell lines or CD138+ BM cells from MM patients compromised their ability to induce bone resorption in an ex vivo organ culture system. Further, CD166 deficiency in MM cells also reduced formation of osteolytic disease in vivo after intra-tibial engraftment. Mechanistic investigation revealed that CD166 expression in MM cells inhibited osteoblastogenesis of BM-derived osteoblast progenitors by suppressing RUNX2 gene expression. Conversely, CD166 expression in MM cells promoted osteoclastogenesis by activating TRAF6-dependent signaling pathways in osteoclast progenitors. Overall, our results define CD166 as a pivotal director in MM cell homing to the BM and MM progression, rationalizing its further study as a candidate therapeutic target for MM treatment.