A neural network approach to multi-biomarker panel discovery by high-throughput plasma proteomics profiling of breast cancer

Date
2013
Language
American English
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Springer Nature
Can't use the file because of accessibility barriers? Contact us with the title of the item, permanent link, and specifics of your accommodation need.
Abstract

Background: In the past several years, there has been increasing interest and enthusiasm in molecular biomarkers as tools for early detection of cancer. Liquid chromatography tandem mass spectrometry (LC/MS/MS) based plasma proteomics profiling technique is a promising technology platform to study candidate protein biomarkers for early detection of cancer. Factors such as inherent variability, protein detectability limitation, and peptide discovery biases among LC/MS/MS platforms have made the classification and prediction of proteomics profiles challenging. Developing proteomics data analysis methods to identify multi-protein biomarker panels for breast cancer diagnosis based on neural networks provides hope for improving both the sensitivity and the specificity of candidate cancer biomarkers for early detection.

Results: In our previous method, we developed a Feed Forward Neural Network-based method to build the classifier for plasma samples of breast cancer and then applied the classifier to predict blind dataset of breast cancer. However, the optimal combination C* in our previous method was actually determined by applying the trained FFNN on the testing set with the combination. Therefore, in this paper, we applied a three way data split to the Feed Forward Neural Network for training, validation and testing based. We found that the prediction performance of the FFNN model based on the three way data split outperforms our previous method and the prediction performance is improved from (AUC = 0.8706, precision = 82.5%, accuracy = 82.5%, sensitivity = 82.5%, specificity = 82.5% for the testing set) to (AUC = 0.895, precision = 86.84%, accuracy = 85%, sensitivity = 82.5%, specificity = 87.5% for the testing set).

Conclusions: Further pathway analysis showed that the top three five-marker panels are associated with complement and coagulation cascades, signaling, activation, and hemostasis, which are consistent with previous findings. We believe the new approach is a better solution for multi-biomarker panel discovery and it can be applied to other clinical proteomics.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Zhang F, Chen J, Wang M, Drabier R. A neural network approach to multi-biomarker panel discovery by high-throughput plasma proteomics profiling of breast cancer. BMC Proc. 2013;7(Suppl 7):S10. doi:10.1186/1753-6561-7-S7-S10
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
BMC Proceedings
Source
PMC
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Final published version
Full Text Available at
This item is under embargo {{howLong}}