High-throughput functional dissection of noncoding SNPs with biased allelic enhancer activity for insulin resistance-relevant phenotypes

If you need an accessible version of this item, please email your request to digschol@iu.edu so that they may create one and provide it to you.
Date
2023
Language
American English
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Elsevier
Abstract

Most of the single-nucleotide polymorphisms (SNPs) associated with insulin resistance (IR)-relevant phenotypes by genome-wide association studies (GWASs) are located in noncoding regions, complicating their functional interpretation. Here, we utilized an adapted STARR-seq to evaluate the regulatory activities of 5,987 noncoding SNPs associated with IR-relevant phenotypes. We identified 876 SNPs with biased allelic enhancer activity effects (baaSNPs) across 133 loci in three IR-relevant cell lines (HepG2, preadipocyte, and A673), which showed pervasive cell specificity and significant enrichment for cell-specific open chromatin regions or enhancer-indicative markers (H3K4me1, H3K27ac). Further functional characterization suggested several transcription factors (TFs) with preferential allelic binding to baaSNPs. We also incorporated multi-omics data to prioritize 102 candidate regulatory target genes for baaSNPs and revealed prevalent long-range regulatory effects and cell-specific IR-relevant biological functional enrichment on them. Specifically, we experimentally verified the distal regulatory mechanism at IRS1 locus, in which rs952227-A reinforces IRS1 expression by long-range chromatin interaction and preferential binding to the transcription factor HOXC6 to augment the enhancer activity. Finally, based on our STARR-seq screening data, we predicted the enhancer activity of 227,343 noncoding SNPs associated with IR-relevant phenotypes (fasting insulin adjusted for BMI, HDL cholesterol, and triglycerides) from the largest available GWAS summary statistics. We further provided an open resource (http://www.bigc.online/fnSNP-IR) for better understanding genetic regulatory mechanisms of IR-relevant phenotypes.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Duan YY, Chen XF, Zhu RJ, et al. High-throughput functional dissection of noncoding SNPs with biased allelic enhancer activity for insulin resistance-relevant phenotypes. Am J Hum Genet. 2023;110(8):1266-1288. doi:10.1016/j.ajhg.2023.07.002
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
American Journal of Human Genetics
Source
PMC
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Final published version
This item is under embargo {{howLong}}