Photocrosslinkable methacrylated gelatin hydrogel as a cell-friendly injectable delivery system for chlorhexidine in regenerative endodontics

If you need an accessible version of this item, please email your request to digschol@iu.edu so that they may create one and provide it to you.
Date
2022
Language
American English
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Elsevier
Abstract

Objectives: This work sought to formulate photocrosslinkable chlorhexidine (CHX)-laden methacrylated gelatin (CHX/GelMA) hydrogels with broad spectrum of action against endodontic pathogens as a clinically viable cell-friendly disinfection therapy prior to regenerative endodontics procedures.

Methods: CHX/GelMA hydrogel formulations were successfully synthesized using CHX concentrations between 0.12 % and 5 % w/v. Hydrogel microstructure was evaluated by scanning electron microscopy (SEM). Swelling and enzymatic degradation were assessed to determine microenvironmental effects. Compression test was performed to investigate the influence of CHX incorporation on the hydrogels' biomechanics. The antimicrobial and anti-biofilm potential of the formulated hydrogels were assessed using agar diffusion assays and a microcosms biofilm model, respectively. The cytocompatibility was evaluated by exposing stem cells from human exfoliated deciduous teeth (SHEDs) to hydrogel extracts (i.e., leachable byproducts obtained from overtime hydrogel incubation in phosphate buffer saline). The data were analyzed using One- and Two-way ANOVA and Tukey's test (α = 0.05).

Results: CHX/GelMA hydrogels were effectively prepared. NMR spectroscopy confirmed the incorporation of CHX into GelMA. The addition of CHX did not change the micromorphology (pore size) nor the swelling profile (p > 0.05). CHX incorporation reduced the degradation rate of the hydrogels (p < 0.001); whereas, it contributed to increased compressive modulus (p < 0.05). Regarding the antimicrobial properties, the incorporation of CHX showed a statistically significant decrease in the number of bacteria colonies at 0.12 % and 0.5 % concentration (p < 0.001) and completely inhibited the growth of biofilm at concentration levels 1 %, 2 %, and 5 %. Meanwhile, the addition of CHX, regardless of the concentration, did not lead to cell toxicity, as cell viability values were above 70 %.

Significance: The addition of CHX into GelMA showed significant antimicrobial action against the pathogens tested, even at low concentrations, with the potential to be used as a cell-friendly injectable drug delivery system for root canal disinfection prior to regenerative endodontics.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Ribeiro JS, Sanz CK, Münchow EA, et al. Photocrosslinkable methacrylated gelatin hydrogel as a cell-friendly injectable delivery system for chlorhexidine in regenerative endodontics. Dent Mater. 2022;38(9):1507-1517. doi:10.1016/j.dental.2022.07.002
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Dental Materials
Source
PMC
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Author's manuscript
Full Text Available at
This item is under embargo {{howLong}}