Maximum empirical likelihood estimation and related topics

dc.contributor.authorPeng, Hanxiang
dc.contributor.authorSchick, Anton
dc.contributor.departmentMathematical Sciences, School of Scienceen_US
dc.date.accessioned2019-01-16T19:52:20Z
dc.date.available2019-01-16T19:52:20Z
dc.date.issued2018
dc.description.abstractThis article develops a theory of maximum empirical likelihood estimation and empirical likelihood ratio testing with irregular and estimated constraint functions that parallels the theory for parametric models and is tailored for semiparametric models. The key is a uniform local asymptotic normality condition for the local empirical likelihood ratio. This condition is shown to hold under mild assumptions on the constraint function. Applications of our results are discussed to inference problems about quantiles under possibly additional information on the underlying distribution and to residual-based inference about quantiles.en_US
dc.eprint.versionAuthor's manuscripten_US
dc.identifier.citationPeng, H., & Schick, A. (2018). Maximum empirical likelihood estimation and related topics. Electronic Journal of Statistics, 12(2), 2962–2994. https://doi.org/10.1214/18-EJS1471en_US
dc.identifier.urihttps://hdl.handle.net/1805/18169
dc.language.isoenen_US
dc.publisherIMSen_US
dc.relation.isversionof10.1214/18-EJS1471en_US
dc.relation.journalElectronic Journal of Statisticsen_US
dc.rightsAttribution 3.0 United States
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/us/
dc.sourceAuthoren_US
dc.subjectirregular and estimated constraintsen_US
dc.subjectnuisance parametersen_US
dc.subjectempirical likelihood ratio testsen_US
dc.titleMaximum empirical likelihood estimation and related topicsen_US
dc.typeArticleen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Peng_2018_on.pdf
Size:
390.49 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.99 KB
Format:
Item-specific license agreed upon to submission
Description: