The importance of hypoxia and extra physiologic oxygen shock/stress for collection and processing of stem and progenitor cells to understand true physiology/pathology of these cells ex vivo

If you need an accessible version of this item, please email your request to digschol@iu.edu so that they may create one and provide it to you.
Date
2015-07
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Wolters Kluwer
Abstract

PURPOSE OF REVIEW: Hematopoietic stem (HSCs) and progenitor (HPCs) cells reside in a hypoxic (lowered oxygen tension) environment, in vivo. We review literature on growth of HSCs and HPCs under hypoxic and normoxic (ambient air) conditions with a focus on our recent work demonstrating the detrimental effects of collecting and processing cells in ambient air through a phenomenon termed extra physiologic oxygen shock/stress (EPHOSS), and we describe means to counteract EPHOSS for enhanced collection of HSCs. RECENT FINDINGS: Collection and processing of bone marrow and cord blood cells in ambient air cause rapid differentiation and loss of HSCs, with increases in HPCs. This apparently irreversible EPHOSS phenomenon results from increased mitochondrial reactive oxygen species, mediated by a p53-cyclophilin D-mitochondrial permeability transition pore axis, and involves hypoxia inducing factor-1α and micro-RNA 210. EPHOSS can be mitigated by collecting and processing cells in lowered (3%) oxygen, or in ambient air in the presence of, cyclosporine A which effects the mitochondrial permeability transition pore, resulting in increased HSC collections. SUMMARY: Our recent findings may be advantageous for HSC collection for hematopoietic cell transplantation, and likely for enhanced collection of other stem cell types. EPHOSS should be considered when ex-vivo cell analysis is utilized for personalized medicine, as metabolism of cells and their response to targeted drug treatment ex vivo may not mimic what occurs in vivo.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Broxmeyer, H. E., O’Leary, H. A., Huang, X., & Mantel, C. (2015). The importance of hypoxia and extra physiologic oxygen shock/stress for collection and processing of stem and progenitor cells to understand true physiology/pathology of these cells ex vivo. Current Opinion in Hematology, 22(4), 273–278. http://doi.org/10.1097/MOH.0000000000000144
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Current Opinion in Hematology
Source
PMC
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Author's manuscript
Full Text Available at
This item is under embargo {{howLong}}