Structural basis for a six nucleotide genetic alphabet

If you need an accessible version of this item, please email your request to digschol@iu.edu so that they may create one and provide it to you.
Date
2015-05
Language
American English
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
ACS
Abstract

Expanded genetic systems are most likely to work with natural enzymes if the added nucleotides pair with geometries that are similar to those displayed by standard duplex DNA. Here, we present crystal structures of 16-mer duplexes showing this to be the case with two nonstandard nucleobases (Z, 6-amino-5-nitro-2(1H)-pyridone and P, 2-amino-imidazo[1,2-a]-1,3,5-triazin-4(8H)one) that were designed to form a Z:P pair with a standard “edge on” Watson–Crick geometry, but joined by rearranged hydrogen bond donor and acceptor groups. One duplex, with four Z:P pairs, was crystallized with a reverse transcriptase host and adopts primarily a B-form. Another contained six consecutive Z:P pairs; it crystallized without a host in an A-form. In both structures, Z:P pairs fit canonical nucleobase hydrogen-bonding parameters and known DNA helical forms. Unique features include stacking of the nitro group on Z with the adjacent nucleobase ring in the A-form duplex. In both B- and A-duplexes, major groove widths for the Z:P pairs are approximately 1 Å wider than those of comparable G:C pairs, perhaps to accommodate the large nitro group on Z. Otherwise, ZP-rich DNA had many of the same properties as CG-rich DNA, a conclusion supported by circular dichroism studies in solution. The ability of standard duplexes to accommodate multiple and consecutive Z:P pairs is consistent with the ability of natural polymerases to biosynthesize those pairs. This, in turn, implies that the GACTZP synthetic genetic system can explore the entire expanded sequence space that additional nucleotides create, a major step forward in this area of synthetic biology.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Georgiadis, M. M., Singh, I., Kellett, W. F., Hoshika, S., Benner, S. A., & Richards, N. G. J. (2015). Structural basis for a six nucleotide genetic alphabet. Journal of the American Chemical Society, 137(21), 6947-6955. http://dx.doi.org/10.1021/jacs.5b03482
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Journal of the American Chemical Society
Source
Author
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Author's manuscript
Full Text Available at
This item is under embargo {{howLong}}