Natural language processing to evaluate texting conversations between patients and healthcare providers during COVID-19 Home-Based Care in Rwanda at scale

dc.contributor.authorLester, Richard T.
dc.contributor.authorManson, Matthew
dc.contributor.authorSemakula, Muhammed
dc.contributor.authorJang, Hyeju
dc.contributor.authorMugabo, Hassan
dc.contributor.authorMagzari, Ali
dc.contributor.authorBlackmer, Junhong Ma
dc.contributor.authorFattah, Fanan
dc.contributor.authorNiyonsenga, Simon Pierre
dc.contributor.authorRwagasore, Edson
dc.contributor.authorRuranga, Charles
dc.contributor.authorRemera, Eric
dc.contributor.authorNgabonziza, Jean Claude S.
dc.contributor.authorCarenini, Giuseppe
dc.contributor.authorNsanzimana, Sabin
dc.contributor.departmentComputer Science, Luddy School of Informatics, Computing, and Engineering
dc.date.accessioned2025-02-19T11:10:23Z
dc.date.available2025-02-19T11:10:23Z
dc.date.issued2025-01-15
dc.description.abstractCommunity isolation of patients with communicable infectious diseases limits spread of pathogens but our understanding of isolated patients' needs and challenges is incomplete. Rwanda deployed a digital health service nationally to assist public health clinicians to remotely monitor and support SARS-CoV-2 cases via their mobile phones using daily interactive short message service (SMS) check-ins. We aimed to assess the texting patterns and communicated topics to better understand patient experiences. We extracted data on all COVID-19 cases and exposed contacts who were enrolled in the WelTel text messaging program between March 18, 2020, and March 31, 2022, and linked demographic and clinical data from the national COVID-19 registry. A sample of the text conversation corpus was English-translated and labeled with topics of interest defined by medical experts. Multiple natural language processing (NLP) topic classification models were trained and compared using F1 scores. Best performing models were applied to classify unlabeled conversations. Total 33,081 isolated patients (mean age 33·9, range 0-100), 44% female, including 30,398 cases and 2,683 contacts) were registered in WelTel. Registered patients generated 12,119 interactive text conversations in Kinyarwanda (n = 8,183, 67%), English (n = 3,069, 25%) and other languages. Sufficiently trained large language models (LLMs) were unavailable for Kinyarwanda. Traditional machine learning (ML) models outperformed fine-tuned transformer architecture language models on the native untranslated language corpus, however, the reverse was observed of models trained on English-only data. The most frequently identified topics discussed included symptoms (69%), diagnostics (38%), social issues (19%), prevention (18%), healthcare logistics (16%), and treatment (8·5%). Education, advice, and triage on these topics were provided to patients. Interactive text messaging can be used to remotely support isolated patients in pandemics at scale. NLP can help evaluate the medical and social factors that affect isolated patients which could ultimately inform precision public health responses to future pandemics.
dc.eprint.versionFinal published version
dc.identifier.citationLester RT, Manson M, Semakula M, et al. Natural language processing to evaluate texting conversations between patients and healthcare providers during COVID-19 Home-Based Care in Rwanda at scale. PLOS Digit Health. 2025;4(1):e0000625. Published 2025 Jan 15. doi:10.1371/journal.pdig.0000625
dc.identifier.urihttps://hdl.handle.net/1805/45819
dc.language.isoen_US
dc.publisherPublic Library of Science
dc.relation.isversionof10.1371/journal.pdig.0000625
dc.relation.journalPLoS Digital Health
dc.rightsAttribution 4.0 Internationalen
dc.rights.urihttps://creativecommons.org/licenses/by/4.0
dc.sourcePMC
dc.subjectCommunity isolation
dc.subjectCommunicable infectious diseases
dc.subjectDigital health service
dc.subjectInteractive text messaging
dc.titleNatural language processing to evaluate texting conversations between patients and healthcare providers during COVID-19 Home-Based Care in Rwanda at scale
dc.typeArticle
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Lester2025Natural-CCBY.pdf
Size:
760.55 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
2.04 KB
Format:
Item-specific license agreed upon to submission
Description: