Hypusinated and unhypusinated isoforms of the translation factor eIF5A exert distinct effects in models of pancreas development and function

Abstract

Hypusination of eukaryotic translation initiation factor 5A (eIF5A) is essential for its role in translation elongation and termination. Although the function of hypusinated eIF5A (eIF5AHyp) in cellular proliferation is well characterized, the role of its unhypusinated form (eIF5ALys) remains unclear. We hypothesized that eIF5ALys exerts independent and negative effects on cellular replication and metabolism, distinct from the loss of eIF5AHyp. To test this hypothesis, we utilized zebrafish and mouse models with inducible knockdowns of deoxyhypusine synthase (DHPS) and eIF5A to investigate their roles in cellular growth. Gene expression analysis via RNA sequencing and morphometric measurements of pancreas and β-cell mass were performed to assess phenotypic changes and identify affected biological pathways. Loss of DHPS in zebrafish resulted in significant defects in pancreatic growth, accompanied by changes in gene expression related to mRNA translation, neurogenesis, and stress pathways. By contrast, knockdown of eIF5A had minimal impact on pancreas development, suggesting that the effects of DHPS loss are not solely because of the lack of eIF5AHyp. In mice, β-cell-specific deletion of DHPS impaired β-cell mass expansion and glucose tolerance, whereas eIF5A deletion had no statistically significant effects. These findings provide evidence for an independent role for eIF5ALys in regulating developmental and functional responses in pancreas health and disease.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Anderson CM, Kulkarni A, Maier B, et al. Hypusinated and unhypusinated isoforms of the translation factor eIF5A exert distinct effects in models of pancreas development and function. J Biol Chem. 2025;301(2):108209. doi:10.1016/j.jbc.2025.108209
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
The Journal of Biological Chemistry
Source
PMC
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Final published version
Full Text Available at
This item is under embargo {{howLong}}