JAK3 restrains inflammatory responses and protects against periodontal disease through Wnt3a signaling

If you need an accessible version of this item, please submit a remediation request.
Date
2020-07
Language
American English
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Wiley
Abstract

Homeostasis between pro- and anti- inflammatory responses induced by bacteria is critical for the maintenance of health. In the oral cavity, proinflammatory mechanisms induced by pathogenic bacteria are well-established; however, the anti-inflammatory responses that act to restrain innate responses remain poorly characterized. Here, we demonstrate that infection with the periodontal pathogen P. gingivalis enhances the activity of JAK3 in innate immune cells, and subsequently phospho-inactivates Nedd4-2, a ubiquitin E3 ligase. In turn, Wnt3 ubiquitination is decreased, while total protein levels are enhanced, leading to a reduction in proinflammatory cytokine levels. In contrast, JAK3 inhibition or Wnt3a robustly enhances NF-κB activity and the production of proinflammatory cytokines in P. gingivalis-stimulated innate immune cells. Moreover, using gain- and loss-of-function approaches, we demonstrate that downstream molecules of Wnt3a signaling, including Dvl3 and β-catenin, are responsible for the negative regulatory role of Wnt3a. In addition, using an in vivo P. gingivalis-mediated periodontal disease model, we show that JAK3 inhibition enhances infiltration of inflammatory cells, reduces expression of Wnt3a and Dvl3 in P. gingivalis-infected gingival tissues, and increases disease severity. Together, our results reveal a new anti-inflammatory role for JAK3 in innate immune cells and show that the underlying signaling pathway involves Nedd4-2-mediated Wnt3a ubiquitination.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Lü L, Yakoumatos L, Ren J, et al. JAK3 restrains inflammatory responses and protects against periodontal disease through Wnt3a signaling [published correction appears in FASEB J. 2021 Jul;35(7):e21704]. FASEB J. 2020;34(7):9120-9140. doi:10.1096/fj.201902697RR
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
FASEB Journal
Source
PMC
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Author's manuscript
Full Text Available at
This item is under embargo {{howLong}}