Structural variation and fusion detection using targeted sequencing data from circulating cell free DNA

If you need an accessible version of this item, please email your request to digschol@iu.edu so that they may create one and provide it to you.
Date
2019-04-23
Language
American English
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Oxford University Press
Abstract

MOTIVATION:

Cancer is a complex disease that involves rapidly evolving cells, often forming multiple distinct clones. In order to effectively understand progression of a patient-specific tumor, one needs to comprehensively sample tumor DNA at multiple time points, ideally obtained through inexpensive and minimally invasive techniques. Current sequencing technologies make the 'liquid biopsy' possible, which involves sampling a patient's blood or urine and sequencing the circulating cell free DNA (cfDNA). A certain percentage of this DNA originates from the tumor, known as circulating tumor DNA (ctDNA). The ratio of ctDNA may be extremely low in the sample, and the ctDNA may originate from multiple tumors or clones. These factors present unique challenges for applying existing tools and workflows to the analysis of ctDNA, especially in the detection of structural variations which rely on sufficient read coverage to be detectable. RESULTS:

Here we introduce SViCT , a structural variation (SV) detection tool designed to handle the challenges associated with cfDNA analysis. SViCT can detect breakpoints and sequences of various structural variations including deletions, insertions, inversions, duplications and translocations. SViCT extracts discordant read pairs, one-end anchors and soft-clipped/split reads, assembles them into contigs, and re-maps contig intervals to a reference genome using an efficient k-mer indexing approach. The intervals are then joined using a combination of graph and greedy algorithms to identify specific structural variant signatures. We assessed the performance of SViCT and compared it to state-of-the-art tools using simulated cfDNA datasets with properties matching those of real cfDNA samples. The positive predictive value and sensitivity of our tool was superior to all the tested tools and reasonable performance was maintained down to the lowest dilution of 0.01% tumor DNA in simulated datasets. Additionally, SViCT was able to detect all known SVs in two real cfDNA reference datasets (at 0.6-5% ctDNA) and predict a novel structural variant in a prostate cancer cohort.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Gawroński, A. R., Lin, Y. Y., McConeghy, B., LeBihan, S., Asghari, H., Koçkan, C., … Hach, F. (2019). Structural variation and fusion detection using targeted sequencing data from circulating cell free DNA. Nucleic acids research, 47(7), e38. doi:10.1093/nar/gkz067
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Nucleic Acids Research
Source
PMC
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Full Text Available at
This item is under embargo {{howLong}}