Completeness of the Bethe Ansatz for the Periodic Isotropic Heisenberg Model

dc.contributor.authorTarasov, V.
dc.contributor.departmentMathematical Sciences, School of Scienceen_US
dc.date.accessioned2019-05-16T18:32:56Z
dc.date.available2019-05-16T18:32:56Z
dc.date.issued2018-09
dc.description.abstractFor the periodic isotropic Heisenberg model with arbitrary spins and inhomogeneities, we describe the system of algebraic equations whose solutions are in bijection with eigenvalues of the transfer-matrix. The system describes pairs of polynomials with the given discrete Wronskian (Casorati determinant) and additional divisibility conditions on discrete Wronskians with multiple steps. If the polynomial of the smaller degree in the pair is coprime with the Wronskian, this system turns into the standard Bethe ansatz equations. Moreover, if the transfer-matrix is diagonalizable, then its spectrum is necessarily simple modulo natural degeneration.en_US
dc.eprint.versionAuthor's manuscripten_US
dc.identifier.citationTarasov, V. (2018). Completeness of the Bethe Ansatz for the Periodic Isotropic Heisenberg Model. Reviews in Mathematical Physics, 30(08), 1840018. http://dx.doi.org/10.1142/S0129055X18400184en_US
dc.identifier.urihttps://hdl.handle.net/1805/19334
dc.language.isoenen_US
dc.publisherWorld Scientificen_US
dc.relation.isversionof10.1142/S0129055X18400184en_US
dc.relation.journalReviews in Mathematical Physicsen_US
dc.rightsIUPUI Open Access Policyen_US
dc.sourceAuthoren_US
dc.subjectperiodic isotropic Heisenberg modelen_US
dc.subjectBethe ansatz equationsen_US
dc.titleCompleteness of the Bethe Ansatz for the Periodic Isotropic Heisenberg Modelen_US
dc.typeArticleen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Tarasov_2018_completeness.pdf
Size:
178.65 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.99 KB
Format:
Item-specific license agreed upon to submission
Description: