Mechanical tibial loading remotely suppresses brain tumors by dopamine-mediated downregulation of CCN4

dc.contributor.authorFan, Yao
dc.contributor.authorZha, Rongrong
dc.contributor.authorSano, Tomohiko
dc.contributor.authorZhao, Xinyu
dc.contributor.authorLiu, Shengzhi
dc.contributor.authorWoollam, Mark D.
dc.contributor.authorWu, Di
dc.contributor.authorSun, Xun
dc.contributor.authorLi, Kexin
dc.contributor.authorEgi, Motoki
dc.contributor.authorLi, Fangjia
dc.contributor.authorMinami, Kazumasa
dc.contributor.authorSiegel, Amanda P.
dc.contributor.authorHoriuchi, Takashi
dc.contributor.authorLiu, Jing
dc.contributor.authorAgarwal, Mangilal
dc.contributor.authorSudo, Akihiro
dc.contributor.authorNakshatri, Harikrishna
dc.contributor.authorLi, Bai-Yan
dc.contributor.authorYokota, Hiroki
dc.contributor.departmentBiomedical Engineering, School of Engineering and Technologyen_US
dc.date.accessioned2023-01-03T16:39:45Z
dc.date.available2023-01-03T16:39:45Z
dc.date.issued2021-05-24
dc.description.abstractMechanical loading to the bone is known to be beneficial for bone homeostasis and for suppressing tumor-induced osteolysis in the loaded bone. However, whether loading to a weight-bearing hind limb can inhibit distant tumor growth in the brain is unknown. We examined the possibility of bone-to-brain mechanotransduction using a mouse model of a brain tumor by focusing on the response to Lrp5-mediated Wnt signaling and dopamine in tumor cells. The results revealed that loading the tibia with elevated levels of tyrosine hydroxylase, a rate-limiting enzyme in dopamine synthesis, markedly reduced the progression of the brain tumors. The simultaneous application of fluphenazine (FP), an antipsychotic dopamine modulator, enhanced tumor suppression. Dopamine and FP exerted antitumor effects through the dopamine receptors DRD1 and DRD2, respectively. Notably, dopamine downregulated Lrp5 via DRD1 in tumor cells. A cytokine array analysis revealed that the reduction in CCN4 was critical for loading-driven, dopamine-mediated tumor suppression. The silencing of Lrp5 reduced CCN4, and the administration of CCN4 elevated oncogenic genes such as MMP9, Runx2, and Snail. In summary, this study demonstrates that mechanical loading regulates dopaminergic signaling and remotely suppresses brain tumors by inhibiting the Lrp5-CCN4 axis via DRD1, indicating the possibility of developing an adjuvant bone-mediated loading therapy.en_US
dc.eprint.versionFinal published versionen_US
dc.identifier.citationFan Y, Zha R, Sano T, et al. Mechanical tibial loading remotely suppresses brain tumors by dopamine-mediated downregulation of CCN4. Bone Res. 2021;9(1):26. Published 2021 May 24. doi:10.1038/s41413-021-00144-2en_US
dc.identifier.urihttps://hdl.handle.net/1805/30826
dc.language.isoen_USen_US
dc.publisherSpringer Natureen_US
dc.relation.isversionof10.1038/s41413-021-00144-2en_US
dc.relation.journalBone Researchen_US
dc.rightsAttribution 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.sourcePMCen_US
dc.subjectCanceren_US
dc.subjectBone qualityen_US
dc.subjectBiomechanicsen_US
dc.titleMechanical tibial loading remotely suppresses brain tumors by dopamine-mediated downregulation of CCN4en_US
dc.typeArticleen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
41413_2021_Article_144.pdf
Size:
4.88 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.99 KB
Format:
Item-specific license agreed upon to submission
Description: