Quantum Toroidal Algebra Associated with glm|n
dc.contributor.author | Bezerra, Luan | |
dc.contributor.author | Mukhin, Evgeny | |
dc.contributor.department | Mathematical Sciences, School of Science | en_US |
dc.date.accessioned | 2022-02-18T21:44:22Z | |
dc.date.available | 2022-02-18T21:44:22Z | |
dc.date.issued | 2021-04 | |
dc.description.abstract | We introduce and study the quantum toroidal algebra Em|n(q1,q2,q3) associated with the superalgebra glm|n with m≠n, where the parameters satisfy q1q2q3 = 1. We give an evaluation map. The evaluation map is a surjective homomorphism of algebras Em|n(q1,q2,q3)→U˜qglˆm|n to the quantum affine algebra associated with the superalgebra glm|n at level c completed with respect to the homogeneous grading, where q2 = q2 and qm−n3=c2. We also give a bosonic realization of level one Em|n(q1,q2,q3)-modules. | en_US |
dc.eprint.version | Author's manuscript | en_US |
dc.identifier.citation | Bezerra, L., & Mukhin, E. (2021). Quantum Toroidal Algebra Associated with $\mathfrak {gl}_{m|n}$. Algebras and Representation Theory, 24(2), 541–564. https://doi.org/10.1007/s10468-020-09959-9 | en_US |
dc.identifier.uri | https://hdl.handle.net/1805/27877 | |
dc.language.iso | en | en_US |
dc.publisher | Springer | en_US |
dc.relation.isversionof | 10.1007/s10468-020-09959-9 | en_US |
dc.relation.journal | Algebras and Representation Theory | en_US |
dc.rights | Publisher Policy | en_US |
dc.source | ArXiv | en_US |
dc.subject | quantum toroidal | en_US |
dc.subject | superalgebras | en_US |
dc.subject | evaluation map | en_US |
dc.title | Quantum Toroidal Algebra Associated with glm|n | en_US |
dc.type | Article | en_US |