AUCTSP: an improved biomarker gene pair class predictor

If you need an accessible version of this item, please submit a remediation request.
Date
2018-06-26
Language
American English
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
BMC
Abstract

The Top Scoring Pair (TSP) classifier, based on the concept of relative ranking reversals in the expressions of pairs of genes, has been proposed as a simple, accurate, and easily interpretable decision rule for classification and class prediction of gene expression profiles. The idea that differences in gene expression ranking are associated with presence or absence of disease is compelling and has strong biological plausibility. Nevertheless, the TSP formulation ignores significant available information which can improve classification accuracy and is vulnerable to selecting genes which do not have differential expression in the two conditions ("pivot" genes). RESULTS:

We introduce the AUCTSP classifier as an alternative rank-based estimator of the magnitude of the ranking reversals involved in the original TSP. The proposed estimator is based on the Area Under the Receiver Operating Characteristic (ROC) Curve (AUC) and as such, takes into account the separation of the entire distribution of gene expression levels in gene pairs under the conditions considered, as opposed to comparing gene rankings within individual subjects as in the original TSP formulation. Through extensive simulations and case studies involving classification in ovarian, leukemia, colon, breast and prostate cancers and diffuse large b-cell lymphoma, we show the superiority of the proposed approach in terms of improving classification accuracy, avoiding overfitting and being less prone to selecting non-informative (pivot) genes. CONCLUSIONS:

The proposed AUCTSP is a simple yet reliable and robust rank-based classifier for gene expression classification. While the AUCTSP works by the same principle as TSP, its ability to determine the top scoring gene pair based on the relative rankings of two marker genes across all subjects as opposed to each individual subject results in significant performance gains in classification accuracy. In addition, the proposed method tends to avoid selection of non-informative (pivot) genes as members of the top-scoring pair.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Kagaris, D., Khamesipour, A., & Yiannoutsos, C. T. (2018). AUCTSP: an improved biomarker gene pair class predictor. BMC bioinformatics, 19(1), 244. doi:10.1186/s12859-018-2231-1
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
BMC Bioinformatics
Source
PMC
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Final published version
Full Text Available at
This item is under embargo {{howLong}}