An efficient algorithm for the blocked pattern matching problem

If you need an accessible version of this item, please submit a remediation request.
Date
2015-10
Language
American English
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Oxford
Abstract

Motivation: Tandem mass spectrometry (MS) has become the method of choice for protein identification and quantification. In the era of big data biology, tandem mass spectra are often searched against huge protein databases generated from genomes or RNA-Seq data for peptide identification. However, most existing tools for MS-based peptide identification compare a tandem mass spectrum against all peptides in a database whose molecular masses are similar to the precursor mass of the spectrum, making mass spectral data analysis slow for huge databases. Tag-based methods extract peptide sequence tags from a tandem mass spectrum and use them as a filter to reduce the number of candidate peptides, thus speeding up the database search. Recently, gapped tags have been introduced into mass spectral data analysis because they improve the sensitivity of peptide identification compared with sequence tags. However, the blocked pattern matching (BPM) problem, which is an essential step in gapped tag-based peptide identification, has not been fully solved.

Results: In this article, we propose a fast and memory-efficient algorithm for the BPM problem. Experiments on both simulated and real datasets showed that the proposed algorithm achieved high speed and high sensitivity for peptide filtration in peptide identification by database search.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Deng, F., Wang, L., & Liu, X. (2014). An efficient algorithm for the blocked pattern matching problem. Bioinformatics. http://dx.doi.org/10.1093/bioinformatics/btu678
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Bioinformatics
Source
Author
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Author's manuscript
Full Text Available at
This item is under embargo {{howLong}}