Assessing identity, phenotype, and fate of endothelial progenitor cells
Date
Language
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Abstract
From the paradigm shifting observations of Harvey, Malpighi, and van Leeuwenhoek, blood vessels have become recognized as distinct and dynamic tissue entities that merge with the heart to form a closed circulatory system.1 Vessel structures are comprised predominantly of a luminal layer of endothelial cells that is surrounded by some form of basement membrane, and mural cells (pericytes or vascular smooth muscle cells) that make up the vessel wall. In larger more complex vessel structures the vessel wall is composed of a complex interwoven matrix with nerve components. Understanding the cellular and molecular basis for the formation, remodeling, repair, and regeneration of the vasculature have been and continue to be popular areas for investigation.
The endothelium has become a particularly scrutinized cell population with the recognition that these cells may play important roles in maintaining vascular homeostasis and in the pathogenesis of a variety of diseases.2 Although it has been known for several decades that some shed or extruded endothelial cells enter the circulation as apparent contaminants in the human blood stream,3 only more recent technologies have permitted the identification of not only senescent sloughed endothelial cells,4 but also endothelial progenitor cells (EPCs), which have been purported to represent a normal component of the formed elements of circulating blood5 and play roles in disease pathogenesis.6–9 Most citations refer to an article published in 1997 in which Asahara and colleagues isolated, characterized, and examined the in vivo function of putative EPCs from human peripheral blood as a major impetus for generating interest in the field.10 This seminal article presented some evidence to consider emergence of a new paradigm for the process of neovascularization in the form of postnatal vasculogenesis. Since publication of that article, interest in circulating endothelial cells, and particularly EPCs, has soared, and one merely has to type the keyword search terms, endothelial progenitor cell, to recover more than 8984 articles including 1347 review articles in PubMed (as of June 2008).
What can we possibly add in the form of another EPC review that will be considered of significant value for the reader? We will attempt to review some of the early article in the field and reflect on how information in those articles was gradually derivatized into perhaps more conflicting rather than unifying concepts. We will also attempt to concisely address some of the important determinants and principles that are now leading to a new understanding of what functionally constitutes an EPC and outline some of the current measures used to identify, enumerate, and quantify these cells. Finally, we give our opinion of the best definition for an EPC based on some comparative analyses performed primarily in human subjects.