Exploiting Domain Knowledge as Causal Independencies in Modeling Gestational Diabetes

dc.contributor.authorMathur, Saurabh
dc.contributor.authorKaranam, Athresh
dc.contributor.authorRadivojac, Predrag
dc.contributor.authorHaas, David M.
dc.contributor.authorKersting, Kristian
dc.contributor.authorNatarajan, Sriraam
dc.contributor.departmentObstetrics and Gynecology, School of Medicine
dc.date.accessioned2023-10-17T13:21:35Z
dc.date.available2023-10-17T13:21:35Z
dc.date.issued2023
dc.description.abstractWe consider the problem of modeling gestational diabetes in a clinical study and develop a domain expert-guided probabilistic model that is both interpretable and explainable. Specifically, we construct a probabilistic model based on causal independence (Noisy-Or) from a carefully chosen set of features. We validate the efficacy of the model on the clinical study and demonstrate the importance of the features and the causal independence model.
dc.eprint.versionAuthor's manuscript
dc.identifier.citationMathur S, Karanam A, Radivojac P, Haas DM, Kersting K, Natarajan S. Exploiting Domain Knowledge as Causal Independencies in Modeling Gestational Diabetes. Pac Symp Biocomput. 2023;28:359-370.
dc.identifier.urihttps://hdl.handle.net/1805/36374
dc.language.isoen_US
dc.publisherWorld Scientific
dc.relation.journalPacific Symposium on Biocomputing 2023
dc.rightsPublisher Policy
dc.sourcePMC
dc.subjectProbabilistic models
dc.subjectBayesian networks
dc.subjectGestational diabetes
dc.titleExploiting Domain Knowledge as Causal Independencies in Modeling Gestational Diabetes
dc.typeArticle
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
nihms-1853000.pdf
Size:
983.9 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.99 KB
Format:
Item-specific license agreed upon to submission
Description: