Inhibition of IFNAR-JAK signaling enhances tolerability and transgene expression of systemic non-viral DNA delivery
Date
Language
Embargo Lift Date
Department
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Abstract
Lipid nanoparticles (LNPs) have demonstrated significant therapeutic value for non-viral delivery of mRNA and siRNA. While there is considerable interest in utilizing LNPs for delivering DNA (DNA-LNPs) to address a broad range of genetic disorders, acute inflammatory responses pose significant safety concerns and limit transgene expression below therapeutically relevant levels. However, the mechanisms and immune signaling pathways underlying DNA-LNP-triggered inflammatory responses are not well characterized. Through the use of gene-targeted mouse models, we have identified cGAS-STING and interferon-α/β receptor (IFNAR) pathways as major mediators of acute inflammation triggered by systemic delivery of DNA-LNPs. cGAS-STING activation induces expression of numerous JAK-STAT-activating cytokines, and we show that treatment of mice with the JAK inhibitors ruxolitinib or baricitinib significantly improves tolerability to systemically delivered DNA-LNPs. Furthermore, specific inhibition of IFNAR signaling enhances both DNA-LNP tolerability and transgene expression. Utilization of JAK inhibitors or IFNAR blockade represent promising strategies for enhancing the safety and efficacy of non-viral DNA delivery for gene therapy.