Optimal Tuning for Divide-and-conquer Kernel Ridge Regression with Massive Data

dc.contributor.authorXu, Ganggang
dc.contributor.authorShang, Zuofeng
dc.contributor.authorCheng, Guang
dc.contributor.departmentMathematical Sciences, School of Scienceen_US
dc.date.accessioned2019-08-22T16:48:39Z
dc.date.available2019-08-22T16:48:39Z
dc.date.issued2018
dc.description.abstractDivide-and-conquer is a powerful approach for large and massive data analysis. In the nonparameteric regression setting, although various theoretical frameworks have been established to achieve optimality in estimation or hypothesis testing, how to choose the tuning parameter in a practically effective way is still an open problem. In this paper, we propose a data-driven procedure based on divide-and-conquer for selecting the tuning parameters in kernel ridge regression by modifying the popular Generalized Cross-validation (GCV, Wahba, 1990). While the proposed criterion is computationally scalable for massive data sets, it is also shown under mild conditions to be asymptotically optimal in the sense that minimizing the proposed distributed-GCV (dGCV) criterion is equivalent to minimizing the true global conditional empirical loss of the averaged function estimator, extending the existing optimality results of GCV to the divide-and-conquer framework.en_US
dc.eprint.versionAuthor's manuscripten_US
dc.identifier.citationXu, G., Shang, Z., & Cheng, G. (2018). Optimal Tuning for Divide-and-conquer Kernel Ridge Regression with Massive Data. International Conference on Machine Learning, 5483–5491. Retrieved from http://proceedings.mlr.press/v80/xu18f.htmlen_US
dc.identifier.urihttps://hdl.handle.net/1805/20511
dc.language.isoenen_US
dc.relation.journalInternational Conference on Machine Learningen_US
dc.rightsPublisher Policyen_US
dc.sourceAuthoren_US
dc.subjectmassive data analysisen_US
dc.subjectdivide-and-conqueren_US
dc.subjectkernel ridge regressionen_US
dc.titleOptimal Tuning for Divide-and-conquer Kernel Ridge Regression with Massive Dataen_US
dc.typeArticleen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Xu_2019_optimal.pdf
Size:
408.91 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.99 KB
Format:
Item-specific license agreed upon to submission
Description: