The human preference for symmetric walking often disappears when one leg is constrained

Date
2021
Language
American English
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
The Physiological Society
Abstract

We hypothesized that minimization of metabolic power could drive people to walk asymmetrically when one leg is constrained We studied healthy young adults and independently constrained one or both step lengths to be markedly shorter or longer than preferred using visual feedback When one leg was constrained to take a shorter or longer step than preferred, asymmetric walking patterns were less metabolically costly than symmetric walking patterns When one leg was constrained to take a shorter or longer step than preferred and the other leg was allowed to move freely, most participants naturally adopted an asymmetric gait People may prefer to walk asymmetrically to minimize metabolic power when the function of one leg is constrained during fixed-speed treadmill walking ABSTRACT: The bilateral symmetry inherent in healthy human walking is often disrupted in clinical conditions that primarily affect one leg (e.g. stroke). This seems intuitive: with one leg constrained, gait becomes asymmetric. However, the emergence of asymmetry is not inevitable. Consider that symmetric walking could be preserved by matching the movement of the unconstrained leg to that of the constrained leg. While this is theoretically possible, it is rarely observed in clinical populations. Here, we hypothesized that minimization of metabolic power could drive people to walk asymmetrically when one leg is constrained, even when symmetric walking remains possible. We tested this hypothesis by performing two experiments in healthy adults. In Experiment 1, we constrained one step to be markedly shorter or longer than preferred. We observed that participants could significantly reduce metabolic power by adopting an asymmetric gait (one short/long step, one preferred step) rather than maintaining a symmetric gait (bilateral short/long steps). Indeed, when allowed to walk freely in this situation, participants naturally adopted a less effortful asymmetric gait. In Experiment 2, we applied a milder constraint that more closely approximated magnitudes of step length asymmetry that are observed in clinical populations. Responses in this experiment were more heterogeneous, though most participants adopted an asymmetric gait. These findings support two central conclusions: (1) symmetry is not necessarily energetically optimal in constrained human walking, and (2) people may prefer to walk asymmetrically to minimize metabolic power when one leg is constrained during fixed-speed treadmill walking, especially when the constraint is large.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Browne MG, Smock CS, Roemmich RT. The human preference for symmetric walking often disappears when one leg is constrained [published correction appears in J Physiol. 2021 Apr;599(8):2345-2346]. J Physiol. 2021;599(4):1243-1260. doi:10.1113/JP280509
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
The Journal of Physiology
Rights
Publisher Policy
Source
PMC
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Author's manuscript
Full Text Available at
This item is under embargo {{howLong}}