Clustering individuals using INMTD: a novel versatile multi-view embedding framework integrating omics and imaging data

Date
2025
Language
American English
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Oxford University Press
Can't use the file because of accessibility barriers? Contact us with the title of the item, permanent link, and specifics of your accommodation need.
Abstract

Motivation: Combining omics and images can lead to a more comprehensive clustering of individuals than classic single-view approaches. Among the various approaches for multi-view clustering, nonnegative matrix tri-factorization (NMTF) and nonnegative Tucker decomposition (NTD) are advantageous in learning low-rank embeddings with promising interpretability. Besides, there is a need to handle unwanted drivers of clusterings (i.e. confounders).

Results: In this work, we introduce a novel multi-view clustering method based on NMTF and NTD, named INMTD, which integrates omics and 3D imaging data to derive unconfounded subgroups of individuals. According to the adjusted Rand index, INMTD outperformed other clustering methods on a synthetic dataset with known clusters. In the application to real-life facial-genomic data, INMTD generated biologically relevant embeddings for individuals, genetics, and facial morphology. By removing confounded embedding vectors, we derived an unconfounded clustering with better internal and external quality; the genetic and facial annotations of each derived subgroup highlighted distinctive characteristics. In conclusion, INMTD can effectively integrate omics data and 3D images for unconfounded clustering with biologically meaningful interpretation.

Availability and implementation: INMTD is freely available at https://github.com/ZuqiLi/INMTD.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Li Z, Windels SFL, Malod-Dognin N, et al. Clustering individuals using INMTD: a novel versatile multi-view embedding framework integrating omics and imaging data. Bioinformatics. 2025;41(4):btaf122. doi:10.1093/bioinformatics/btaf122
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Bioinformatics
Source
PMC
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Final published version
Full Text Available at
This item is under embargo {{howLong}}