First-generation structure-activity relationship studies of 2,3,4,9-tetrahydro-1H-carbazol-1-amines as CpxA phosphatase inhibitors

Abstract

Genetic activation of the bacterial two-component signal transduction system, CpxRA, abolishes the virulence of a number of pathogens in human and murine infection models. Recently, 2,3,4,9-tetrahydro-1H-carbazol-1-amines were shown to activate the CpxRA system by inhibiting the phosphatase activity of CpxA. Herein we report the initial structure-activity relationships of this scaffold by focusing on three approaches 1) A-ring substitution, 2) B-ring deconstruction to provide N-arylated amino acid derivatives, and 3) C-ring elimination to give 2-ethylamino substituted indoles. These studies demonstrate that the A-ring is amenable to functionalization and provides a promising avenue for continued optimization of this chemotype. Further investigations revealed that the C-ring is not necessary for activity, although it likely provides conformational constraint that is beneficial to potency, and that the (R) stereochemistry is required at the primary amine. Simplification of the scaffold through deconstruction of the B-ring led to inactive compounds, highlighting the importance of the indole core. A new lead compound 26 was identified, which manifests a ∼30-fold improvement in CpxA phosphatase inhibition over the initial hit. Comparison of amino and des-amino derivatives in bacterial strains differing in membrane permeability and efflux capabilities demonstrate that the amine is required not only for target engagement but also for permeation and accumulation in Escherichia coli.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Li, Y., Gardner, J. J., Fortney, K. R., Leus, I. V., Bonifay, V., Zgurskaya, H. I., … Duerfeldt, A. S. (2019). First-generation structure-activity relationship studies of 2,3,4,9-tetrahydro-1H-carbazol-1-amines as CpxA phosphatase inhibitors. Bioorganic & Medicinal Chemistry Letters, 29(14), 1836–1841. https://doi.org/10.1016/j.bmcl.2019.05.003
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Bioorganic & Medicinal Chemistry Letters
Rights
Publisher Policy
Source
Publisher
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Author's manuscript
Full Text Available at
This item is under embargo {{howLong}}