A reimbursement framework for artificial intelligence in healthcare

dc.contributor.authorAbràmoff, Michael D.
dc.contributor.authorRoehrenbeck, Cybil
dc.contributor.authorTrujillo, Sylvia
dc.contributor.authorGoldstein, Juli
dc.contributor.authorGraves, Anitra S.
dc.contributor.authorRepka, Michael X.
dc.contributor.authorSilva, Ezequiel, III
dc.contributor.departmentMedicine, School of Medicine
dc.date.accessioned2025-03-11T12:37:35Z
dc.date.available2025-03-11T12:37:35Z
dc.date.issued2022-06-09
dc.description.abstractResponsible adoption of healthcare artificial intelligence (AI) requires that AI systems which benefit patients and populations, including autonomous AI systems, are incentivized financially at a consistent and sustainable level. We present a framework for analytically determining value and cost of each unique AI service. The framework’s processes involve affected stakeholders, including patients, providers, legislators, payors, and AI creators, in order to find an optimum balance among ethics, workflow, cost, and value as identified by each of these stakeholders. We use a real world, completed, an example of a specific autonomous AI service, to show how multiple “guardrails” for the AI system implementation enforce ethical principles. It can guide the development of sustainable reimbursement for future AI services, ensuring the quality of care, healthcare equity, and mitigation of potential bias, and thereby contribute to realize the potential of AI to improve clinical outcomes for patients and populations, improve access, remove disparities, and reduce cost.
dc.eprint.versionFinal published version
dc.identifier.citationAbràmoff MD, Roehrenbeck C, Trujillo S, et al. A reimbursement framework for artificial intelligence in healthcare. NPJ Digit Med. 2022;5(1):72. Published 2022 Jun 9. doi:10.1038/s41746-022-00621-w
dc.identifier.urihttps://hdl.handle.net/1805/46309
dc.language.isoen_US
dc.publisherSpringer Nature
dc.relation.isversionof10.1038/s41746-022-00621-w
dc.relation.journalNPJ: Digital Medicine
dc.rightsAttribution 4.0 Internationalen
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.sourcePMC
dc.subjectHealth services
dc.subjectTranslational research
dc.subjectHealthcare artificial intelligence (AI)
dc.titleA reimbursement framework for artificial intelligence in healthcare
dc.typeArticle
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Abràmoff2022Reimbursement-CCBY.pdf
Size:
415.51 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
2.04 KB
Format:
Item-specific license agreed upon to submission
Description: