A novel inhibitory corticostriatal circuit that expresses mu opioid receptor-mediated synaptic plasticity

Date
2023
Language
American English
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Elsevier
Abstract

Corticostriatal circuits are generally characterized by the release of glutamate neurotransmitter from cortical terminals within the striatum. It is well known that cortical excitatory input to the dorsal striatum regulates addictive drug-related behaviors. We previously reported that anterior insular cortex (AIC) synaptic inputs to the dorsolateral striatum (DLS) control binge alcohol drinking in mice. These AIC-DLS glutamate synapses are also the sole sites of corticostriatal mu opioid receptor-mediated excitatory long-term depression (MOR-LTD) in the DLS. Recent work demonstrates that some regions of cortex send long-range, direct inhibitory inputs into the dorsal striatum. Nothing is known about the existence and regulation of AIC-DLS inhibitory synaptic transmission. Here, using a combination of patch clamp electrophysiology and optogenetics, we characterized a novel AIC-DLS corticostriatal inhibitory circuit and its regulation by MOR-mediated inhibitory LTD (MOR-iLTD). First, we found that the activation of presynaptic MORs produces MOR-iLTD in the DLS and dorsomedial striatum. Then, we showed that medium spiny neurons within the DLS receive direct inhibitory synaptic input from the cortex, specifically from the motor cortex and AIC. Using transgenic mice that express cre-recombinase within parvalbumin-expressing inhibitory neurons, we determined that this specific cortical neuron subtype sends direct GABAergic projections to the DLS. Moreover, these AIC-DLS inhibitory synaptic input subtypes express MOR-iLTD. These data suggest a novel GABAergic corticostriatal circuit that could be involved in the regulation of drug and alcohol consumption-related behaviors.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Munoz B, Atwood BK. A novel inhibitory corticostriatal circuit that expresses mu opioid receptor-mediated synaptic plasticity. Neuropharmacology. 2023;240:109696. doi:10.1016/j.neuropharm.2023.109696
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Neuropharmacology
Source
PMC
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Author's manuscript
Full Text Available at
This item is under embargo {{howLong}}