Identifying disease sensitive and quantitative trait-relevant biomarkers from multidimensional heterogeneous imaging genetics data via sparse multimodal multitask learning

Date
2012
Language
American English
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
Oxford University Press
Can't use the file because of accessibility barriers? Contact us with the title of the item, permanent link, and specifics of your accommodation need.
Abstract

Motivation: Recent advances in brain imaging and high-throughput genotyping techniques enable new approaches to study the influence of genetic and anatomical variations on brain functions and disorders. Traditional association studies typically perform independent and pairwise analysis among neuroimaging measures, cognitive scores and disease status, and ignore the important underlying interacting relationships between these units.

Results: To overcome this limitation, in this article, we propose a new sparse multimodal multitask learning method to reveal complex relationships from gene to brain to symptom. Our main contributions are three-fold: (i) introducing combined structured sparsity regularizations into multimodal multitask learning to integrate multidimensional heterogeneous imaging genetics data and identify multimodal biomarkers; (ii) utilizing a joint classification and regression learning model to identify disease-sensitive and cognition-relevant biomarkers; (iii) deriving a new efficient optimization algorithm to solve our non-smooth objective function and providing rigorous theoretical analysis on the global optimum convergency. Using the imaging genetics data from the Alzheimer's Disease Neuroimaging Initiative database, the effectiveness of the proposed method is demonstrated by clearly improved performance on predicting both cognitive scores and disease status. The identified multimodal biomarkers could predict not only disease status but also cognitive function to help elucidate the biological pathway from gene to brain structure and function, and to cognition and disease.

Availability: Software is publicly available at: http://ranger.uta.edu/~heng/multimodal/.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Wang H, Nie F, Huang H, et al. Identifying disease sensitive and quantitative trait-relevant biomarkers from multidimensional heterogeneous imaging genetics data via sparse multimodal multitask learning. Bioinformatics. 2012;28(12):i127-i136. doi:10.1093/bioinformatics/bts228
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
Bioinformatics
Source
PMC
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Final published version
Full Text Available at
This item is under embargo {{howLong}}