Machine Learning for Large-Scale Quality Control of 3D Shape Models in Neuroimaging

dc.contributor.authorPetrov, Dmitry
dc.contributor.authorGutman, Boris A.
dc.contributor.authorYu, Shih-Hua (Julie)
dc.contributor.authorvan Erp, Theo G.M.
dc.contributor.authorTurner, Jessica A.
dc.contributor.authorSchmaal, Lianne
dc.contributor.authorVeltman, Dick
dc.contributor.authorWang, Lei
dc.contributor.authorAlpert, Kathryn
dc.contributor.authorIsaev, Dmitry
dc.contributor.authorZavaliangos-Petropulu, Artemis
dc.contributor.authorChing, Christopher R.K.
dc.contributor.authorCalhoun, Vince
dc.contributor.authorGlahn, David
dc.contributor.authorSatterthwaite, Theodore D.
dc.contributor.authorAndreasen, Ole Andreas
dc.contributor.authorBorgwardt, Stefan
dc.contributor.authorHowells, Fleur
dc.contributor.authorGroenewold, Nynke
dc.contributor.authorVoineskos, Aristotle
dc.contributor.authorRadua, Joaquim
dc.contributor.authorPotkin, Steven G.
dc.contributor.authorCrespo-Facorro, Benedicto
dc.contributor.authorTordesillas-Gutirrez, Diana
dc.contributor.authorShen, Li
dc.contributor.authorLebedeva, Irina
dc.contributor.authorSpalletta, Gianfranco
dc.contributor.authorDonohoe, Gary
dc.contributor.authorKochunov, Peter
dc.contributor.authorRosa, Pedro G.P.
dc.contributor.authorJames, Anthony
dc.contributor.authorDannlowski, Udo
dc.contributor.authorBaune, Berhard T.
dc.contributor.authorAleman, Andre
dc.contributor.authorGotlib, Ian H.
dc.contributor.authorWalter, Henrik
dc.contributor.authorWalter, Martin
dc.contributor.authorSoares, Jair C.
dc.contributor.authorEhrlich, Stefan
dc.contributor.authorGur, Ruben C.
dc.contributor.authorDoan, N. Trung
dc.contributor.authorAgartz, Ingrid
dc.contributor.authorWestlye, Lars T.
dc.contributor.authorHarrisberger, Fabienne
dc.contributor.authorRicher-Rossler, Anita
dc.contributor.authorUhlmann, Anne
dc.contributor.authorStein, Dan J.
dc.contributor.authorDickie, Erin W.
dc.contributor.authorPomarol-Clotet, Edith
dc.contributor.authorFuentes-Claramonte, Paola
dc.contributor.authorCanales-Rodriguez, Erick Jorge
dc.contributor.authorSalvador, Raymond
dc.contributor.authorHuang, Alexander J.
dc.contributor.authorRoiz-Santianez, Roberto
dc.contributor.authorCong, Shan
dc.contributor.authorTomyshev, Alexander
dc.contributor.authorPiras, Fabrizio
dc.contributor.authorVecchio, Daniela
dc.contributor.authorBanaj, Nerisa
dc.contributor.authorCiullo, Valentina
dc.contributor.authorHong, Elliot
dc.contributor.authorBusatto, Geraldo
dc.contributor.authorZanetti, Marcus V.
dc.contributor.authorSerpa, Mauricio H.
dc.contributor.authorCervenka, Simon
dc.contributor.authorKelly, Sinead
dc.contributor.authorGrotegerd, Dominik
dc.contributor.authorSacchet, Matthew D.
dc.contributor.authorVeer, Illya M.
dc.contributor.authorLi, Meng
dc.contributor.authorWu, Mon-Ju
dc.contributor.authorIrungu, Benson
dc.contributor.authorWalton, Esther
dc.contributor.authorThompson, Paul M.
dc.contributor.departmentMedicine, School of Medicineen_US
dc.date.accessioned2019-04-30T13:55:32Z
dc.date.available2019-04-30T13:55:32Z
dc.date.issued2017-09
dc.description.abstractAs very large studies of complex neuroimaging phenotypes become more common, human quality assessment of MRI-derived data remains one of the last major bottlenecks. Few attempts have so far been made to address this issue with machine learning. In this work, we optimize predictive models of quality for meshes representing deep brain structure shapes. We use standard vertex-wise and global shape features computed homologously across 19 cohorts and over 7500 human-rated subjects, training kernelized Support Vector Machine and Gradient Boosted Decision Trees classifiers to detect meshes of failing quality. Our models generalize across datasets and diseases, reducing human workload by 30-70%, or equivalently hundreds of human rater hours for datasets of comparable size, with recall rates approaching inter-rater reliability.en_US
dc.eprint.versionAuthor's manuscripten_US
dc.identifier.citationPetrov, D., Gutman, B. A., Yu, S. J., van Erp, T., Turner, J. A., Schmaal, L., … Thompson, P. M. (2017). Machine Learning for Large-Scale Quality Control of 3D Shape Models in Neuroimaging. Machine learning in medical imaging. MLMI (Workshop), 10541, 371–378. doi:10.1007/978-3-319-67389-9_43en_US
dc.identifier.urihttps://hdl.handle.net/1805/18998
dc.language.isoen_USen_US
dc.publisherSpringer Natureen_US
dc.relation.isversionof10.1007/978-3-319-67389-9_43en_US
dc.relation.journalMachine learning in medical imagingen_US
dc.rightsPublisher Policyen_US
dc.sourcePMCen_US
dc.subjectMachine learningen_US
dc.subjectQuality controlen_US
dc.subjectShape analysisen_US
dc.titleMachine Learning for Large-Scale Quality Control of 3D Shape Models in Neuroimagingen_US
dc.typeArticleen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
nihms980690.pdf
Size:
521.56 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.99 KB
Format:
Item-specific license agreed upon to submission
Description: