Identifying progressive imaging genetic patterns via multi-task sparse canonical correlation analysis: a longitudinal study of the ADNI cohort

dc.contributor.authorDu, Lei
dc.contributor.authorLiu, Kefei
dc.contributor.authorZhu, Lei
dc.contributor.authorYao, Xiaohui
dc.contributor.authorRisacher, Shannon L.
dc.contributor.authorGuo, Lei
dc.contributor.authorSaykin, Andrew J.
dc.contributor.authorShen, Li
dc.contributor.departmentRadiology & Imaging Sciences, IU School of Medicineen_US
dc.date.accessioned2019-09-05T18:27:20Z
dc.date.available2019-09-05T18:27:20Z
dc.date.issued2019-07
dc.description.abstractMotivation Identifying the genetic basis of the brain structure, function and disorder by using the imaging quantitative traits (QTs) as endophenotypes is an important task in brain science. Brain QTs often change over time while the disorder progresses and thus understanding how the genetic factors play roles on the progressive brain QT changes is of great importance and meaning. Most existing imaging genetics methods only analyze the baseline neuroimaging data, and thus those longitudinal imaging data across multiple time points containing important disease progression information are omitted. Results We propose a novel temporal imaging genetic model which performs the multi-task sparse canonical correlation analysis (T-MTSCCA). Our model uses longitudinal neuroimaging data to uncover that how single nucleotide polymorphisms (SNPs) play roles on affecting brain QTs over the time. Incorporating the relationship of the longitudinal imaging data and that within SNPs, T-MTSCCA could identify a trajectory of progressive imaging genetic patterns over the time. We propose an efficient algorithm to solve the problem and show its convergence. We evaluate T-MTSCCA on 408 subjects from the Alzheimer’s Disease Neuroimaging Initiative database with longitudinal magnetic resonance imaging data and genetic data available. The experimental results show that T-MTSCCA performs either better than or equally to the state-of-the-art methods. In particular, T-MTSCCA could identify higher canonical correlation coefficients and capture clearer canonical weight patterns. This suggests that T-MTSCCA identifies time-consistent and time-dependent SNPs and imaging QTs, which further help understand the genetic basis of the brain QT changes over the time during the disease progression. Availability and implementation The software and simulation data are publicly available at https://github.com/dulei323/TMTSCCA. Supplementary information Supplementary data are available at Bioinformatics online.en_US
dc.identifier.citationDu, L., Liu, K., Zhu, L., Yao, X., Risacher, S. L., Guo, L., … Alzheimer’s Disease Neuroimaging Initiative (2019). Identifying progressive imaging genetic patterns via multi-task sparse canonical correlation analysis: a longitudinal study of the ADNI cohort. Bioinformatics, 35(14), i474–i483. doi:10.1093/bioinformatics/btz320en_US
dc.identifier.urihttps://hdl.handle.net/1805/20811
dc.language.isoen_USen_US
dc.publisherOxford University Pressen_US
dc.relation.isversionof10.1093/bioinformatics/btz320en_US
dc.relation.journalBioinformaticsen_US
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
dc.sourcePMCen_US
dc.subjectBrain structureen_US
dc.subjectBrain functionen_US
dc.subjectBrain disorderen_US
dc.subjectImaging quantitative traits (QTs)en_US
dc.subjectEndophenotypesen_US
dc.subjectBrain scienceen_US
dc.subjectGeneticsen_US
dc.titleIdentifying progressive imaging genetic patterns via multi-task sparse canonical correlation analysis: a longitudinal study of the ADNI cohorten_US
dc.typeArticleen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
btz320.pdf
Size:
422.79 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.99 KB
Format:
Item-specific license agreed upon to submission
Description: