Modeling of Temperature Swing Effect in Silica Reinforced Porous Anodized Aluminum Based Thermal Barrier Coating

If you need an accessible version of this item, please email your request to digschol@iu.edu so that they may create one and provide it to you.
Date
2021
Language
American English
Embargo Lift Date
Committee Members
Degree
Degree Year
Department
Grantor
Journal Title
Journal ISSN
Volume Title
Found At
SAE International
Abstract

This paper presents a finite element (FE) based model to simulate the temperature swing phenomenon of Silica Reinforced Porous Anodized Aluminum (SiRPA) thermal barrier coatings (TBCs). A realistic 3D SiRPA coating microstructure is constructed, based on the morphology of an experimentally grown coating structure, and the known relationship of geometry and anodization parameters. The coatings’ thermophysical properties are first computed using the FE model. The predicted thermal conductivity, thermal diffusivity, and bulk density are compared well with the experimental values. Also, transient thermal analysis is conducted to model the temperature swing effect of the coating by comparing the temperature fluctuation of SiRPA coating with conventional Yttria Stabilized Zirconia (YSZ) based TBCs. With the predicted thermophysical properties, the model is capable to predict the “temperature swing” effect of SiRPA by a transient thermal analysis. Temperature fluctuation of SiRPA is found greater compared to YSZ coating, suggesting its applicability in internal combustion engines. The porosity-dependent thermal conductivity of SiRPA coating is numerically derived. The thermal conductivity decreases linearly with increasing total porosity. The modeling data illustrate that the SiRPA coating shows a higher fluctuation compared to YSZ based TBCs, suggesting its applicability in internal combustion engines.

Description
item.page.description.tableofcontents
item.page.relation.haspart
Cite As
Gulhane, A., Zhang, J., Yang, X., Lu, Z., Park, H., Jung, Y., Li, Y., & Zhang, J. (2021). Modeling of Temperature Swing Effect in Silica-Reinforced Porous Anodized Aluminum-Based Thermal Barrier Coating. SAE International Journal of Materials & Manufacturing, 14(3), 283–292.
ISSN
Publisher
Series/Report
Sponsorship
Major
Extent
Identifier
Relation
Journal
SAE International Journal of Materials & Manufacturing
Source
Author
Alternative Title
Type
Article
Number
Volume
Conference Dates
Conference Host
Conference Location
Conference Name
Conference Panel
Conference Secretariat Location
Version
Author's manuscript
Full Text Available at
This item is under embargo {{howLong}}