Chambers in the symplectic cone and stability of symplectomorphism group for ruled surface

dc.contributor.authorBuse, Olguta
dc.contributor.authorLi, Jun
dc.contributor.departmentMathematical Sciences, School of Scienceen_US
dc.date.accessioned2022-07-26T16:09:39Z
dc.date.available2022-07-26T16:09:39Z
dc.date.issued2022-02-14
dc.description.abstractWe continue our previous work to prove that for any non-minimal ruled surface $(M,\omega)$, the stability under symplectic deformations of $\pi_0, \pi_1$ of $Symp(M,\omega)$ is guided by embedded $J$-holomorphic curves. Further, we prove that for any fixed sizes blowups, when the area ratio $\mu$ between the section and fiber goes to infinity, there is a topological colimit of $Symp(M,\omega_{\mu}).$ Moreover, when the blowup sizes are all equal to half the area of the fiber class, we give a topological model of the colimit which induces non-trivial symplectic mapping classes in $Symp(M,\omega) \cap \rm Diff_0(M),$ where $\rm Diff_0(M)$ is the identity component of the diffeomorphism group. These mapping classes are not Dehn twists along Lagrangian spheres.en_US
dc.eprint.versionAuthor's manuscripten_US
dc.identifier.citationBuse, O., & Li, J. (2022). Chambers in the symplectic cone and stability of symplectomorphism group for ruled surface (arXiv:2202.06795). arXiv. https://doi.org/10.48550/arXiv.2202.06795en_US
dc.identifier.urihttps://hdl.handle.net/1805/29646
dc.language.isoenen_US
dc.publisherarXiven_US
dc.relation.isversionofDOI: 10.48550/arXiv.2202.06795en_US
dc.relation.journalarXiven_US
dc.rightsPublisher Policyen_US
dc.sourceAuthoren_US
dc.subjectSymplectic Geometryen_US
dc.subjectMathematicsen_US
dc.subjectnon-minimal ruled surfaceen_US
dc.titleChambers in the symplectic cone and stability of symplectomorphism group for ruled surfaceen_US
dc.typeArticleen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Buse2022Chambers-Preprint.pdf
Size:
630.71 KB
Format:
Adobe Portable Document Format
Description:
Preprint
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.99 KB
Format:
Item-specific license agreed upon to submission
Description: